Random fixed points of multivalued maps in Fréchet spaces
Archivum mathematicum, Tome 38 (2002) no. 2, pp. 95-100 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we prove a general random fixed point theorem for multivalued maps in Frechet spaces. We apply our main result to obtain some common random fixed point theorems. Our main result unifies and extends the work due to Benavides, Acedo and Xu [4], Itoh [8], Lin [12], Liu [13], Tan and Yuan [20], Xu [23], etc.
In this paper we prove a general random fixed point theorem for multivalued maps in Frechet spaces. We apply our main result to obtain some common random fixed point theorems. Our main result unifies and extends the work due to Benavides, Acedo and Xu [4], Itoh [8], Lin [12], Liu [13], Tan and Yuan [20], Xu [23], etc.
Classification : 47H10, 47H40, 60H25
Keywords: multivalued map; random fixed point; Frechet space
@article{ARM_2002_38_2_a1,
     author = {Shahzad, Naseer},
     title = {Random fixed points of multivalued maps in {Fr\'echet} spaces},
     journal = {Archivum mathematicum},
     pages = {95--100},
     year = {2002},
     volume = {38},
     number = {2},
     mrnumber = {1909591},
     zbl = {1068.47075},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2002_38_2_a1/}
}
TY  - JOUR
AU  - Shahzad, Naseer
TI  - Random fixed points of multivalued maps in Fréchet spaces
JO  - Archivum mathematicum
PY  - 2002
SP  - 95
EP  - 100
VL  - 38
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2002_38_2_a1/
LA  - en
ID  - ARM_2002_38_2_a1
ER  - 
%0 Journal Article
%A Shahzad, Naseer
%T Random fixed points of multivalued maps in Fréchet spaces
%J Archivum mathematicum
%D 2002
%P 95-100
%V 38
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2002_38_2_a1/
%G en
%F ARM_2002_38_2_a1
Shahzad, Naseer. Random fixed points of multivalued maps in Fréchet spaces. Archivum mathematicum, Tome 38 (2002) no. 2, pp. 95-100. http://geodesic.mathdoc.fr/item/ARM_2002_38_2_a1/

[1] Beg I., Shahzad N.: Some random approximation theorems with applications. Nonlinear Anal. 35 (1999), 609–616. | MR | Zbl

[2] Beg I., Shahzad N.: Random fixed points of weakly inward operators in conical shells. J. App. Math. Stochastic Anal. 8 (1995), 261–264. | MR | Zbl

[3] Beg I., Shahzad N.: Applications of the proximity map to random fixed point theorems in Hilbert spaces. J. Math. Anal. Appl. 196 (1995), 606–613. | MR

[4] Benavides T. D., Acedo G. L., Xu H. K.: Random fixed points of set-valued operators. Proc. Amer. Math. Soc. 124 (1996), 831–838. | MR | Zbl

[5] Bharucha-Reid A. T.: Fixed point theorems in probabilistic analysis. Bull. Amer. Math. Soc. 82 (1976), 641–657. | MR | Zbl

[6] Browder F. E.: Semicontractive and semiaccretive nonlinear mappings in Banach spaces. Bull. Amer. Math. Soc. 74 (1968), 660–665. | MR | Zbl

[7] Himmelberg C. J.: Measurable relations. Fund. Math. 87 (1975), 53–72. | MR | Zbl

[8] Itoh S.: Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 67 (1979), 261–273. | MR | Zbl

[9] Itoh S.: A random fixed point theorem for a multivalued contraction mapping. Pacific J. Math. 68 (1977), 85–90. | MR | Zbl

[10] Kuratowski K., Ryll-Nardzewski C.: A general theorem on selectors. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 379–403. | MR | Zbl

[11] Lami Dozo E.: Multivalued nonexpansive mappings with Opial’s condition. Proc. Amer. Math. Soc. 38 (1973), 286–292. | MR

[12] Lin T. C.: Random approximations and random fixed point theorems for continuous 1-set-contractive random maps. Proc. Amer. Math. Soc. 123 (1995), 1167–1176. | MR | Zbl

[13] Liu L. S.: Some random approximations and random fixed point theorems for 1-set-contractive random operators. Proc. Amer. Math. Soc. 125 (1997), 515–521. | MR | Zbl

[14] Opial Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967), 595–597. | MR | Zbl

[15] Papageorgiou N. S.: Random fixed points and random differential inclusions. Int. J. Math. Math. Sci. 11 (1988), 551–560. | MR | Zbl

[16] Rudin W.: Functional Analysis. McGraw Hill, New York, 1973. | MR | Zbl

[17] Shahzad N.: Random fixed point theorems for various classes of 1-set-contractive maps in Banach spaces. J. Math. Anal. Appl. 203 (1996), 712–718. | MR | Zbl

[18] Shahzad N., Khan L. A.: Random fixed points for 1-set-contractive random maps in Frechet spaces. J. Math. Anal. Appl. 231 (1999), 68–75. | MR

[19] Shahzad N., Latif S.: Random fixed points for several classes of 1-ball-contractive and 1-set-contractive random maps. J. Math. Anal. Appl. 237 (1999), 83–92. | MR | Zbl

[20] Tan K. K., Yuan X. Z.: Random fixed point theorems and approximation. Stochastic Anal. Appl. 15 (1997), 103–123. | MR | Zbl

[21] Tan K. K., Yuan X. Z.: Random fixed point theorems and approximation in cones. J. Math. Anal. Appl. 185 (1994), 378–390. | MR | Zbl

[22] Thomas G. E. F.: Integration on functions with values in locally convex Suslin spaces. Trans. Amer. Math. Soc. 212 (1975), 61–81. | MR

[23] Xu H. K.: Some random fixed point theorems for condensing and nonexpansive operators. Proc. Amer. Math. Soc. 110 (1990), 495–500. | MR | Zbl

[24] Xu H. K., Beg I.: Measurability of fixed point sets of multivalued random operators. J. Math. Anal. Appl. 225 (1998), 62–72. | MR | Zbl