On the transitive and $\omega$-limit points of the continuous mappings of the circle
Archivum mathematicum, Tome 38 (2002) no. 1, pp. 49-52
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We extend the recent results from the class $\mathcal {C}(I,I)$ of continuous maps of the interval to the class $\mathcal {C}(\mathbb {S},\mathbb {S})$ of continuous maps of the circle. Among others, we give a characterization of $\omega $-limit sets and give a characterization of sets of transitive points for these maps.
We extend the recent results from the class $\mathcal {C}(I,I)$ of continuous maps of the interval to the class $\mathcal {C}(\mathbb {S},\mathbb {S})$ of continuous maps of the circle. Among others, we give a characterization of $\omega $-limit sets and give a characterization of sets of transitive points for these maps.
Classification : 37B25, 37E10
@article{ARM_2002_38_1_a4,
     author = {Pokluda, David},
     title = {On the transitive and $\omega$-limit points of the continuous mappings of the circle},
     journal = {Archivum mathematicum},
     pages = {49--52},
     year = {2002},
     volume = {38},
     number = {1},
     mrnumber = {1899567},
     zbl = {1087.37033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2002_38_1_a4/}
}
TY  - JOUR
AU  - Pokluda, David
TI  - On the transitive and $\omega$-limit points of the continuous mappings of the circle
JO  - Archivum mathematicum
PY  - 2002
SP  - 49
EP  - 52
VL  - 38
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2002_38_1_a4/
LA  - en
ID  - ARM_2002_38_1_a4
ER  - 
%0 Journal Article
%A Pokluda, David
%T On the transitive and $\omega$-limit points of the continuous mappings of the circle
%J Archivum mathematicum
%D 2002
%P 49-52
%V 38
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2002_38_1_a4/
%G en
%F ARM_2002_38_1_a4
Pokluda, David. On the transitive and $\omega$-limit points of the continuous mappings of the circle. Archivum mathematicum, Tome 38 (2002) no. 1, pp. 49-52. http://geodesic.mathdoc.fr/item/ARM_2002_38_1_a4/

[1] Agronsky S. J., Bruckner A. M., Ceder J. G., Pearson T. L.: The structure of $\omega $-limit sets for continuous functions. Real Anal. Exchange 15 (1989/1990), 483–510. | MR

[2] Alsedà L., Llibre J., Misiurewicz M.: Combinatorial Dynamics and Entropy in Dimension One. World Scientific Publ., Singapore 1993. | MR

[3] Block L. S., Coppel W. A.: Dynamics in One Dimension. Lecture Notes in Math., vol. 1513, Springer, Berlin, 1992. | MR | Zbl

[4] Blokh A. M.: On transitive mappings of one-dimensional ramified manifolds. in Differential-difference equations and problems of mathematical physics, Inst. Mat. Acad. Sci., Kiev, 1984, 3–9 (Russian). | MR | Zbl

[5] Kolyada S., Snoha, L’.: Some aspects of topological transitivity – a survey. Iteration Theory (ECIT 94), Grazer Math. Ber. 334 (1997), 3–37. | MR | Zbl

[6] Pokluda D., Smítal J.: A “universal” dynamical system generated by a continuous map of the interval. Proc. Amer. Math. Soc. 128 (2000), 3047–3056. | MR | Zbl

[7] Pokluda D.: On the structure of sets of transitive points for continuous maps of the interval. Real Anal. Exchange, 25 (1999/2000), 45–48.