@article{ARM_2002_38_1_a4,
author = {Pokluda, David},
title = {On the transitive and $\omega$-limit points of the continuous mappings of the circle},
journal = {Archivum mathematicum},
pages = {49--52},
year = {2002},
volume = {38},
number = {1},
mrnumber = {1899567},
zbl = {1087.37033},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2002_38_1_a4/}
}
Pokluda, David. On the transitive and $\omega$-limit points of the continuous mappings of the circle. Archivum mathematicum, Tome 38 (2002) no. 1, pp. 49-52. http://geodesic.mathdoc.fr/item/ARM_2002_38_1_a4/
[1] Agronsky S. J., Bruckner A. M., Ceder J. G., Pearson T. L.: The structure of $\omega $-limit sets for continuous functions. Real Anal. Exchange 15 (1989/1990), 483–510. | MR
[2] Alsedà L., Llibre J., Misiurewicz M.: Combinatorial Dynamics and Entropy in Dimension One. World Scientific Publ., Singapore 1993. | MR
[3] Block L. S., Coppel W. A.: Dynamics in One Dimension. Lecture Notes in Math., vol. 1513, Springer, Berlin, 1992. | MR | Zbl
[4] Blokh A. M.: On transitive mappings of one-dimensional ramified manifolds. in Differential-difference equations and problems of mathematical physics, Inst. Mat. Acad. Sci., Kiev, 1984, 3–9 (Russian). | MR | Zbl
[5] Kolyada S., Snoha, L’.: Some aspects of topological transitivity – a survey. Iteration Theory (ECIT 94), Grazer Math. Ber. 334 (1997), 3–37. | MR | Zbl
[6] Pokluda D., Smítal J.: A “universal” dynamical system generated by a continuous map of the interval. Proc. Amer. Math. Soc. 128 (2000), 3047–3056. | MR | Zbl
[7] Pokluda D.: On the structure of sets of transitive points for continuous maps of the interval. Real Anal. Exchange, 25 (1999/2000), 45–48.