Common fixed points of Greguš type multi-valued mappings
Archivum mathematicum, Tome 38 (2002) no. 1, pp. 37-47 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This work is considered as a continuation of [19,20,24]. The concepts of $\delta $-compatibility and sub-compatibility of Li-Shan [19, 20] between a set-valued mapping and a single-valued mapping are used to establish some common fixed point theorems of Greguš type under a $\phi $-type contraction on convex metric spaces. Extensions of known results, especially theorems by Fisher and Sessa [11] (Theorem B below) and Jungck [16] are thereby obtained. An example is given to support our extension.
This work is considered as a continuation of [19,20,24]. The concepts of $\delta $-compatibility and sub-compatibility of Li-Shan [19, 20] between a set-valued mapping and a single-valued mapping are used to establish some common fixed point theorems of Greguš type under a $\phi $-type contraction on convex metric spaces. Extensions of known results, especially theorems by Fisher and Sessa [11] (Theorem B below) and Jungck [16] are thereby obtained. An example is given to support our extension.
Classification : 47H04, 47H10, 54H25
Keywords: common fixed points; $\delta $-compatible mappings; sub-compatible mappings; complete convex metric spaces
@article{ARM_2002_38_1_a3,
     author = {Rashwan, R. A. and Ahmed, Magdy A.},
     title = {Common fixed points of {Gregu\v{s}} type multi-valued mappings},
     journal = {Archivum mathematicum},
     pages = {37--47},
     year = {2002},
     volume = {38},
     number = {1},
     mrnumber = {1899566},
     zbl = {1088.54506},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2002_38_1_a3/}
}
TY  - JOUR
AU  - Rashwan, R. A.
AU  - Ahmed, Magdy A.
TI  - Common fixed points of Greguš type multi-valued mappings
JO  - Archivum mathematicum
PY  - 2002
SP  - 37
EP  - 47
VL  - 38
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2002_38_1_a3/
LA  - en
ID  - ARM_2002_38_1_a3
ER  - 
%0 Journal Article
%A Rashwan, R. A.
%A Ahmed, Magdy A.
%T Common fixed points of Greguš type multi-valued mappings
%J Archivum mathematicum
%D 2002
%P 37-47
%V 38
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2002_38_1_a3/
%G en
%F ARM_2002_38_1_a3
Rashwan, R. A.; Ahmed, Magdy A. Common fixed points of Greguš type multi-valued mappings. Archivum mathematicum, Tome 38 (2002) no. 1, pp. 37-47. http://geodesic.mathdoc.fr/item/ARM_2002_38_1_a3/

[1] Banas, J. and El-Sayed , W. G.: Solvability of Hammerstein integral equation in the class of functions of locally bounded variation. Boll. Un. Mat. Ital. 7, 5-B (1991), 893–904. | MR

[2] Beg, I. and Shahzad, W.: An application of a fixed point theorem to best simultaneous approximation. Approx. Theory Appl.$ \& $ its Appl. 10, No. 3 (1994), 1–4. | MR

[3] Chen, M. J. and Park, S.: A unified approach to generalized quasi-variational inequalities. Comm. Appl. Nonlinear Anal. 4, No. 2 (1997), 103–118. | MR

[4] Ciric, L. B.: On a common fixed point theorem of a Greguš type. Publ. Inst. Math. (Beograd) 49, No. 63 (1991), 174–178. | MR | Zbl

[5] Ciric, L. B.: On Diviccaro, Fisher and Sessa open questions. Arch. Math. (Brno) 29, No.3-4 (1993), 145–152. | MR | Zbl

[6] Ciric, L. B.: On some discontinuous fixed point mappings in convex metric spaces. Czechoslovak Math. J. 43, No. 118 (1993), 319–326. | MR | Zbl

[7] Ciric, L. B.: Nonexpansive type mappings and a fixed point theorem in convex metric space. Rend. Accad. Naz. Sci. XL Mem. Math. Appl. (5) 15, fasc. 1 (1995), 263–271. | MR

[8] Davies, R. O. and Sessa, S.: A common fixed point theorem of Greguš type for compatible mappings. Facta Univ. Ser. Math. Inform. 7 (1992), 99–106. | MR

[9] Diviccaro, M. L., Fisher, B. and Sessa, S.: A common fixed point theorem of Greguš type. Publ. Math. Debrecen 34, No. 1-2 (1987), 83–89. | MR

[10] Fisher, B.: Common fixed points of mappings and set-valued mappings. Rostock. Math. Kolloq. 18 (1981), 69–77. | MR | Zbl

[11] Fisher, B. and Sessa, S.: On a fixed point theorem of Greguš. Int. J. Math. Math. Sci. 9, No. 1 (1986), 23–28. | MR

[12] Fisher, B. and Sessa, S.: Common fixed point theorems for weakly commuting mappings. Period. Math. Hungar. 20, No. 3 (1989), 207–218. | MR

[13] Greguš, M.: A fixed point theorem in Banach space. Boll. Un. Math. Ital. 17- A, No. 5 (1980), 193–198. | MR

[14] Guay, M. D., Singh, K. L. and Whitfield, J. H.: Fixed point theorems for nonexpansive mappings in convex metric spaces. Proc. Conference on Nonlinear Analysis 60 (1982), 179–189. | MR

[15] Jungck, G.: Compatible mapppings and common fixed points. Int. J. Math. Math. Sci. 9 (1986), 771–779. | MR

[16] Jungck, G.: On a fixed point theorem of Fisher and Sessa. Int. J. Math. Math. Sci. 13 (1990), 497–500. | MR | Zbl

[17] Jungck, G. and Rhoades, B. E.: Some fixed point theorems for compatible maps. Int. J. Math. Math. Sci. 16, No. 3 (1993), 417–428. | MR

[18] Khan, M. S. and Imdad, M.: A common fixed point theorem for a class of mappings. Indian J. Pure Appl. Math. 14 (1983), 1220–1227. | MR

[19] Liu Li-Shan: On common fixed points of single-valued mappings and set-valued mappings. J. Qufu Norm. Univ. Nat. Sci. Ed. 18, No. 1 (1992), 6–10. | MR

[20] Liu Li-Shan: Common fixed point theorems for (sub) compatible and set-valued generalized nonexpansive mappings in convex metric spaces. Appl. Math. Mech. 14, No. 7 (1993), 685–692. | MR

[21] Mukherjee, R. N. and Verma, V.: A note on fixed point theorem of Greguš. Math. Japon. 33 (1988), 745–749. | MR

[22] Murthy, P. P., Cho, Y. J. and Fisher, B.: Common fixed points of Greguš type mappings. Glas. Math. 30, No. 50 (1995), 335–341. | MR

[23] Pathak, H. K. and Fisher, B.: Common fixed point theorems with applications in dynamic programming. Glas. Math. 31, No. 51 (1996), 321–328. | MR

[24] Rashwan, R. A. and Ahmed, M. A.: Common fixed points for generalized contraction mappings in convex metric spaces. J. Qufu Norm. Univ. Ed. 24, No. 3 (1998), 15–21. | MR

[25] Sessa, S.: On a weak commutativity condition of mappings in fixed point considerations. Publ. Inst. Math. (Beograd) 32, No. 46 (1982), 149–153. | MR | Zbl

[26] Sessa, S. and Fisher, B.: Common fixed points of two mappings on Banach spaces. J. Math. Phys. Sci. 18 (1984), 353–360. | MR

[27] Sessa, S., Khan, M. S. and Imdad, M.: Common fixed point theorem with a weak commutativity condition. Glas. Mat. 21, No. 41 (1986), 225–235. | MR

[28] Takahashi, W.: A convexity in metric space and nonexpansive mappings. Kodai Math. Semin. Rep. 22 (1970), 142–149. | MR | Zbl