Asymptotic properties of solutions of second-order difference equations
Archivum mathematicum, Tome 38 (2002) no. 1, pp. 15-26
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Using the method of variation of constants, discrete inequalities and Tychonoff’s fixed-point theorem we study problem asymptotic equivalence of second order difference equations.
Using the method of variation of constants, discrete inequalities and Tychonoff’s fixed-point theorem we study problem asymptotic equivalence of second order difference equations.
Classification : 39A10
Keywords: asymptotic equivalence; difference inequalities
@article{ARM_2002_38_1_a1,
     author = {Morcha{\l}o, Jaros{\l}aw},
     title = {Asymptotic properties of solutions of second-order difference equations},
     journal = {Archivum mathematicum},
     pages = {15--26},
     year = {2002},
     volume = {38},
     number = {1},
     mrnumber = {1899564},
     zbl = {1087.39003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2002_38_1_a1/}
}
TY  - JOUR
AU  - Morchało, Jarosław
TI  - Asymptotic properties of solutions of second-order difference equations
JO  - Archivum mathematicum
PY  - 2002
SP  - 15
EP  - 26
VL  - 38
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2002_38_1_a1/
LA  - en
ID  - ARM_2002_38_1_a1
ER  - 
%0 Journal Article
%A Morchało, Jarosław
%T Asymptotic properties of solutions of second-order difference equations
%J Archivum mathematicum
%D 2002
%P 15-26
%V 38
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2002_38_1_a1/
%G en
%F ARM_2002_38_1_a1
Morchało, Jarosław. Asymptotic properties of solutions of second-order difference equations. Archivum mathematicum, Tome 38 (2002) no. 1, pp. 15-26. http://geodesic.mathdoc.fr/item/ARM_2002_38_1_a1/

[1] Brauer, F., Wang, J. S.: On the asymptotic relationship between solutions of two systems of ordinary differential equation. J. Differential Equations 6 (1969), 527–543. | MR

[2] Hallam, T. G.: Asymptotic relationskips between the solutions of two second order differential equations. Ann. Polon. Math. 24 (1971), 295–300. | MR

[3] Lakshmikantham, V., Leela, S.: Differential and Integral Ineqalities. vol. I, New York and London, Academic Press 1969.

[4] Morchało, J.: Asymptotic equivalence of Volterra difference systems. Publ. Mat. 39 (1995), 301–312. | MR

[5] Morchało, J.: Asymptotic equivalence of difference equations. Math. Slovaca 48 (1998), 57–68. | MR

[6] Morchało, J.: Asymptotic equivalence of second-order difference equations. J. Math. Anal. Appl. 238 (1999), 91–100. | MR

[7] Onuchic, N.: Relationship among the solutions of two systems or ordinary differential equation. Michigan Math. J. 10 (1963), 129–139. | MR

[8] Ráb, M.: Asymptotic relationships between the solutions of two systems of differential equations. Ann. Polon. Math. 30 (1974), 119–124. | MR

[9] Svec, M.: Asymptotic relationship between solutions of two systems of differential equations. Czechoslovak Math. J. 24 (99), No. 1 (1974), 44–58. | MR | Zbl

[10] Talpalaru, P.: Asymptotic behaviour of perturbed difference equations. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Ser. VIIILXIV (1979), 563–571. | MR | Zbl

[11] Kuben, J.: Asymptotic equivalence of second order differential equations. Czechoslovak Math. J. 34 (109) (1984), 189–201. | MR | Zbl