On the asymptotic convergence of the polynomial collocation method for singular integral equations and periodic pseudodifferential equations
Archivum mathematicum, Tome 38 (2002) no. 1, pp. 1-13 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove the convergence of polynomial collocation method for periodic singular integral, pseudodifferential and the systems of pseudodifferential equations in Sobolev spaces $H^{s}$ via the equivalence between the collocation and modified Galerkin methods. The boundness of the Lagrange interpolation operator in this spaces when $s>1/2$ allows to obtain the optimal error estimate for the approximate solution i.e. it has the same rate as the best approximation of the exact solution by the polynomials.
We prove the convergence of polynomial collocation method for periodic singular integral, pseudodifferential and the systems of pseudodifferential equations in Sobolev spaces $H^{s}$ via the equivalence between the collocation and modified Galerkin methods. The boundness of the Lagrange interpolation operator in this spaces when $s>1/2$ allows to obtain the optimal error estimate for the approximate solution i.e. it has the same rate as the best approximation of the exact solution by the polynomials.
Classification : 45E05, 47G30, 65N35, 65R20
Keywords: singular integral equations; periodic pseudodifferential equations; Galerkin method; collocation method
@article{ARM_2002_38_1_a0,
     author = {Fedotov, A. I.},
     title = {On the asymptotic convergence of the polynomial collocation method for singular integral equations and periodic pseudodifferential equations},
     journal = {Archivum mathematicum},
     pages = {1--13},
     year = {2002},
     volume = {38},
     number = {1},
     mrnumber = {1899563},
     zbl = {1087.65109},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2002_38_1_a0/}
}
TY  - JOUR
AU  - Fedotov, A. I.
TI  - On the asymptotic convergence of the polynomial collocation method for singular integral equations and periodic pseudodifferential equations
JO  - Archivum mathematicum
PY  - 2002
SP  - 1
EP  - 13
VL  - 38
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2002_38_1_a0/
LA  - en
ID  - ARM_2002_38_1_a0
ER  - 
%0 Journal Article
%A Fedotov, A. I.
%T On the asymptotic convergence of the polynomial collocation method for singular integral equations and periodic pseudodifferential equations
%J Archivum mathematicum
%D 2002
%P 1-13
%V 38
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2002_38_1_a0/
%G en
%F ARM_2002_38_1_a0
Fedotov, A. I. On the asymptotic convergence of the polynomial collocation method for singular integral equations and periodic pseudodifferential equations. Archivum mathematicum, Tome 38 (2002) no. 1, pp. 1-13. http://geodesic.mathdoc.fr/item/ARM_2002_38_1_a0/

[1] Agranovich M. S.: Spectral properties of elliptic pseudo-differential operators on a closed curve. Funct. Anal. Appl. 13 (1979), 279–281. | MR

[2] Arnold D. N., Wendland W. L.: On the asymptotic convergence of collocation methods. Math. of Comp. 41, No 164(1983), 349–381. | MR | Zbl

[3] Arnold D. N., Wendland W. L.: The convergence of spline collocation for strongly elliptic equations on curves. Number. Math. 46 (1985), 317–341. | MR | Zbl

[4] Elshner J.: On spline collocation for singular integral equations on an interval. Semin. Anal. Oper. Equat. and Numer. Anal. 1985/86. (1986), 31–54. | MR

[5] Elshner J.: On spline approximation for a class of integral equations III. Collocation methods with piecewise linear splines. Semin. Anal. Oper. Equat. and Numer. Anal. 1986/87. (1987), 25–40. | MR

[6] Elshner J.: On spline approximation for singular integral equations on an interval. Preprint Akad. Wiss. DDR, Karl Weierstrass Inst. Nath. 4, 1987.

[7] Elshner J.: On spline approximation for singular integral equations on an interval. Math. Nachr. 139 (1988), 309–319. | MR

[8] Gakhov F. D.: Boundary Value Problems. Pergamon Press, Oxford 1966. | MR | Zbl

[9] Gohberg I., Fel’dman I.: Convolution Equations and Projection Methods for their Solution. AMS Translations of Mathematical Monographs 41, Amer. Math. Soc., Providence, RI, 1974. | MR | Zbl

[10] Gohberg I., Krupnik N.: Einführung in die Theorie der eindimensionalen singulären Integraloperatoren. Birkhäuser, Basel, Boston, Stuttgart, 1979. | MR | Zbl

[11] Golberg M. A.: The convergence of several algorithms for solving integral equations with finite-part integrals. J. Integral Equations 5 (1983), 329–340. | MR | Zbl

[12] Ivanov V. V.: The approximate solutions of the singular integral equations. PhD’s Thesis, Moscow 1956 (in Russian).

[13] McLean W., Prössdorf S. B., Wendland W. L.: Pointwise error estimate for the trigonometric collocation method applied to singular integral equations and periodic pseudodifferential equations. J. Integral Equations Appl. 2, No 1(1989), 125–146. | MR

[14] McLean W., Wendland W. L.: Trigonometric approximation of solutions of periodic pseudodifferential equations. Operation Theory: Advances and Applications 41 (1989), 359–383. | MR | Zbl

[15] Mikhlin S. G., Prössdorf S. B.: Singular integral operators. Springer-Verlag, 1986. | MR | Zbl

[16] Muskhelishvili N. I.: Singular Integral Equations. 2nd Edn. Noordhoff, Groningen 1953. | MR | Zbl

[17] Noether F.: Über eine Klasse singulärer Integralgleichungen. Math. Ann. 82 (1921), 42-63. | MR

[18] Prössdorf S. B.: On spline collocation of singular integral equations on non uniform mesh. Semin. Anal. Oper. Equat. and Numer. Anal. 1986/87 (1987), 123–137.

[19] Prössdorf S. B.: Recent results in numerical analysis for singular integral equations. Proc. 9th Conf. Probl. and Meth. Math. Phys. (TPM) Karl-Marx-Stadt, June 27 - July 1 (1988), 224–234. | MR

[20] Prössdorf S. B., Schmidt G.: A finite element collocation method for singular integral equations. Math. Nachr. 100 (1981), 33–60. | MR | Zbl

[21] Saranen J., Wendland W. L.: The Fourier series representation of pseudo-differential operators on closed curves. Complex Variables 8 (1987), 55–64. | MR | Zbl

[22] Schmidt G.: On spline collocation for singular integral equations. Math. Nachr. 111 (1983), 177–196. | MR | Zbl

[23] Stein E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970. | MR | Zbl

[24] Wendland W. L.: Strongly elliptic boundary integral equations. in “The State of the Art in Numerical Analysis” (A. Iserles and M.J.D. Powell, eds.) Claredon Press, Oxford, 1987. | MR | Zbl