Random fixed points of increasing compact random maps
Archivum mathematicum, Tome 37 (2001) no. 4, pp. 329-332 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(\Omega ,\Sigma )$ be a measurable space, $(E,P)$ be an ordered separable Banach space and let $[a,b]$ be a nonempty order interval in $E$. It is shown that if $f:\Omega \times [a,b]\rightarrow E$ is an increasing compact random map such that $a\le f(\omega ,a)$ and $f(\omega ,b)\le b$ for each $\omega \in \Omega $ then $f$ possesses a minimal random fixed point $\alpha $ and a maximal random fixed point $\beta $.
Let $(\Omega ,\Sigma )$ be a measurable space, $(E,P)$ be an ordered separable Banach space and let $[a,b]$ be a nonempty order interval in $E$. It is shown that if $f:\Omega \times [a,b]\rightarrow E$ is an increasing compact random map such that $a\le f(\omega ,a)$ and $f(\omega ,b)\le b$ for each $\omega \in \Omega $ then $f$ possesses a minimal random fixed point $\alpha $ and a maximal random fixed point $\beta $.
Classification : 47H10, 47H40, 60H25
Keywords: random fixed point; random map; measurable space; ordered Banach space
@article{ARM_2001_37_4_a8,
     author = {Beg, Ismat},
     title = {Random fixed points of increasing compact random maps},
     journal = {Archivum mathematicum},
     pages = {329--332},
     year = {2001},
     volume = {37},
     number = {4},
     mrnumber = {1879455},
     zbl = {1068.47079},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2001_37_4_a8/}
}
TY  - JOUR
AU  - Beg, Ismat
TI  - Random fixed points of increasing compact random maps
JO  - Archivum mathematicum
PY  - 2001
SP  - 329
EP  - 332
VL  - 37
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2001_37_4_a8/
LA  - en
ID  - ARM_2001_37_4_a8
ER  - 
%0 Journal Article
%A Beg, Ismat
%T Random fixed points of increasing compact random maps
%J Archivum mathematicum
%D 2001
%P 329-332
%V 37
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2001_37_4_a8/
%G en
%F ARM_2001_37_4_a8
Beg, Ismat. Random fixed points of increasing compact random maps. Archivum mathematicum, Tome 37 (2001) no. 4, pp. 329-332. http://geodesic.mathdoc.fr/item/ARM_2001_37_4_a8/

[1] Beg I.: Random fixed points of random operators satisfying semicontractivity conditions. Math. Japon. 46 (1) (1997), 151–155. | MR | Zbl

[2] Beg I., Shahzad N.: Some random approximation theorem with applications. Nonlinear Anal. 35 (1999), 609–616. | MR

[3] Bharucha-Reid A. T.: Random Integral Equations. Academic Press, New York , 1972. | MR | Zbl

[4] Bharucha-Reid A. T.: Fixed point theorems in probabilistic analysis. Bull. Amer. Math. Soc. 82 (1976), 641–657. | MR | Zbl

[5] Hans O.: Reduzierende zulliällige transformaten. Czechoslovak Math. J. 7 (1957), 154–158. | MR

[6] Hans O.: Random operator equations. In: Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability Vol. II, Part I, 185–202, University of California Press, Berkeley 1961. | MR | Zbl

[7] Itoh S.: Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 67 (1979), 261–273. | MR | Zbl

[8] Jameson G.: Ordered Linear Spaces. Lecture Notes, Vol. 141, Springer Verlag, New York, 1970. | MR | Zbl

[9] Lishan L.: Some random approximations and random fixed point theorems for 1-set-contractive random operators. Proc. Amer. Math. Soc. 125 (1997), 515–521. | MR

[10] Papageorgiou N. S.: Random fixed point theorems for measurable multifunctions in Banach spaces. Proc. Amer. Math. Soc. 97 (1986), 507–514. | MR | Zbl

[11] Schaefer H. H.: Topological Vector Spaces. Springer Verlag, New York, 1971. | MR | Zbl

[12] Sehgal V. M., Waters C.: Some random fixed point theorems. Contemporary Math. 21 (1983), 215–218. | MR | Zbl

[13] Špaček A.: Zufällige gleichungen. Czechoslovak Math. J. 5 (1955), 462–466. | MR | Zbl

[14] Tan K. K., Yuan X. Z.: Random fixed point theorems and approximations. Stochastic Anal. Appl. 15 (1) (1997), 103–123. | MR

[15] Zaanen A. C. : Introduction to Operator Theory in Riesz Spaces. Springer Verlag, Berlin, 1997. | MR | Zbl