Keywords: random fixed point; random map; measurable space; ordered Banach space
@article{ARM_2001_37_4_a8,
author = {Beg, Ismat},
title = {Random fixed points of increasing compact random maps},
journal = {Archivum mathematicum},
pages = {329--332},
year = {2001},
volume = {37},
number = {4},
mrnumber = {1879455},
zbl = {1068.47079},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2001_37_4_a8/}
}
Beg, Ismat. Random fixed points of increasing compact random maps. Archivum mathematicum, Tome 37 (2001) no. 4, pp. 329-332. http://geodesic.mathdoc.fr/item/ARM_2001_37_4_a8/
[1] Beg I.: Random fixed points of random operators satisfying semicontractivity conditions. Math. Japon. 46 (1) (1997), 151–155. | MR | Zbl
[2] Beg I., Shahzad N.: Some random approximation theorem with applications. Nonlinear Anal. 35 (1999), 609–616. | MR
[3] Bharucha-Reid A. T.: Random Integral Equations. Academic Press, New York , 1972. | MR | Zbl
[4] Bharucha-Reid A. T.: Fixed point theorems in probabilistic analysis. Bull. Amer. Math. Soc. 82 (1976), 641–657. | MR | Zbl
[5] Hans O.: Reduzierende zulliällige transformaten. Czechoslovak Math. J. 7 (1957), 154–158. | MR
[6] Hans O.: Random operator equations. In: Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability Vol. II, Part I, 185–202, University of California Press, Berkeley 1961. | MR | Zbl
[7] Itoh S.: Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 67 (1979), 261–273. | MR | Zbl
[8] Jameson G.: Ordered Linear Spaces. Lecture Notes, Vol. 141, Springer Verlag, New York, 1970. | MR | Zbl
[9] Lishan L.: Some random approximations and random fixed point theorems for 1-set-contractive random operators. Proc. Amer. Math. Soc. 125 (1997), 515–521. | MR
[10] Papageorgiou N. S.: Random fixed point theorems for measurable multifunctions in Banach spaces. Proc. Amer. Math. Soc. 97 (1986), 507–514. | MR | Zbl
[11] Schaefer H. H.: Topological Vector Spaces. Springer Verlag, New York, 1971. | MR | Zbl
[12] Sehgal V. M., Waters C.: Some random fixed point theorems. Contemporary Math. 21 (1983), 215–218. | MR | Zbl
[13] Špaček A.: Zufällige gleichungen. Czechoslovak Math. J. 5 (1955), 462–466. | MR | Zbl
[14] Tan K. K., Yuan X. Z.: Random fixed point theorems and approximations. Stochastic Anal. Appl. 15 (1) (1997), 103–123. | MR
[15] Zaanen A. C. : Introduction to Operator Theory in Riesz Spaces. Springer Verlag, Berlin, 1997. | MR | Zbl