Linear Volterra-Stieltjes integral equations in the sense of the Kurzweil-Henstock integral
Archivum mathematicum, Tome 37 (2001) no. 4, pp. 307-328 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In 1990, Hönig proved that the linear Volterra integral equation \[ x\left( t\right) -\,(K)\int \nolimits _{\left[ a,t\right] }\alpha \left( t,s\right) x\left( s\right)\,ds=f\left( t\right)\,,\qquad t\in \left[ a,b\right]\,, \] where the functions are Banach space-valued and $f$ is a Kurzweil integrable function defined on a compact interval $\left[ a,b\right] $ of the real line $\mathbb R$, admits one and only one solution in the space of the Kurzweil integrable functions with resolvent given by the Neumann series. In the present paper, we extend Hönig’s result to the linear Volterra-Stieltjes integral equation \[ x\left( t\right) - (K)\int \nolimits _{\left[ a,t\right] }\alpha \left( t,s\right) x\left( s\right) dg\left( s\right) =f\left( t\right) ,\qquad t\in \left[ a,b\right]\,, \] in a real-valued context.
In 1990, Hönig proved that the linear Volterra integral equation \[ x\left( t\right) -\,(K)\int \nolimits _{\left[ a,t\right] }\alpha \left( t,s\right) x\left( s\right)\,ds=f\left( t\right)\,,\qquad t\in \left[ a,b\right]\,, \] where the functions are Banach space-valued and $f$ is a Kurzweil integrable function defined on a compact interval $\left[ a,b\right] $ of the real line $\mathbb R$, admits one and only one solution in the space of the Kurzweil integrable functions with resolvent given by the Neumann series. In the present paper, we extend Hönig’s result to the linear Volterra-Stieltjes integral equation \[ x\left( t\right) - (K)\int \nolimits _{\left[ a,t\right] }\alpha \left( t,s\right) x\left( s\right) dg\left( s\right) =f\left( t\right) ,\qquad t\in \left[ a,b\right]\,, \] in a real-valued context.
Classification : 26A39, 45A05
Keywords: linear integral equations; Kurzweil-Henstock integrals
@article{ARM_2001_37_4_a7,
     author = {Federson, M. and Bianconi, R.},
     title = {Linear {Volterra-Stieltjes} integral equations in the sense of the {Kurzweil-Henstock} integral},
     journal = {Archivum mathematicum},
     pages = {307--328},
     year = {2001},
     volume = {37},
     number = {4},
     mrnumber = {1879454},
     zbl = {1090.45001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2001_37_4_a7/}
}
TY  - JOUR
AU  - Federson, M.
AU  - Bianconi, R.
TI  - Linear Volterra-Stieltjes integral equations in the sense of the Kurzweil-Henstock integral
JO  - Archivum mathematicum
PY  - 2001
SP  - 307
EP  - 328
VL  - 37
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2001_37_4_a7/
LA  - en
ID  - ARM_2001_37_4_a7
ER  - 
%0 Journal Article
%A Federson, M.
%A Bianconi, R.
%T Linear Volterra-Stieltjes integral equations in the sense of the Kurzweil-Henstock integral
%J Archivum mathematicum
%D 2001
%P 307-328
%V 37
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2001_37_4_a7/
%G en
%F ARM_2001_37_4_a7
Federson, M.; Bianconi, R. Linear Volterra-Stieltjes integral equations in the sense of the Kurzweil-Henstock integral. Archivum mathematicum, Tome 37 (2001) no. 4, pp. 307-328. http://geodesic.mathdoc.fr/item/ARM_2001_37_4_a7/

[1] Federson M.: Sobre a existência de soluções para Equações Integrais Lineares com respeito a Integrais de Gauge. Doctor Thesis, Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil, 1998, in portuguese.

[2] Federson M.: The Fundamental Theorem of Calculus for multidimensional Banach space-valued Henstock vector integrals. Real Anal. Exchange 25 (1), (1999-2000), 469–480. | MR

[3] Federson M.: Substitution formulas for the vector integrals of Kurzweil and of Henstock. Math. Bohem., (2001), in press.

[4] Federson M., Bianconi R.: Linear integral equations of Volterra concerning the integral of Henstock. Real Anal. Exchange 25 (1), (1999-2000), 389–417. | MR

[5] Gilioli A.: Natural ultrabornological non-complete, normed function spaces. Arch. Math. 61 (1993), 465–477. | MR | Zbl

[6] Henstock R.: A Riemann-type integral of Lebesgue power. Canad. J. Math. 20 (1968), 79–87. | MR | Zbl

[7] Henstock R.: The General Theory of Integration. Oxford Math. Monogr., Clarendon Press, Oxford, 1991. | MR | Zbl

[8] Hönig C. S.: The Abstract Riemann-Stieltjes Integral and its Applications to Linear Differential Equations with Generalized Boundary Conditions. Notas do Instituto de Matemática e Estatística da Universidade de São Paulo, Série Matemática, 1, 1973. | MR | Zbl

[9] Hönig C. S.: Volterra-Stieltjes integral equations. Math. Studies 16, North-Holland Publ. Comp., Amsterdam, 1975. | MR

[10] Hönig C. S.: Equations intégrales généralisées et applications. Publ. Math. Orsay, 83-01, exposé 5, 1–50. | Zbl

[11] Hönig C. S.: On linear Kurzweil-Henstock integral equations. Seminário Brasileiro de Análise 32 (1990), 283–298.

[12] Hönig C. S.: On a remarkable differential characterization of the functions that are Kurzweil-Henstock integrals. Seminário Brasileiro de Análise 33 (1991), 331–341.

[13] Hönig C. S.: A Riemannian characterization of the Bochner-Lebesgue integral. Seminário Brasileiro de Análise 35 (1992), 351–358.

[14] Kurzweil J.: Nichtabsolut Konvergente Integrale. Leipzig, 1980. | MR | Zbl

[15] Lee P. Y.: Lanzhou Lectures on Henstock Integration. World Sci. Singapore, 1989. | MR | Zbl

[16] Lin, Ying-Jian: On the equivalence of the McShane and Lebesgue integrals. Real Anal. Exchange 21 (2), (1995-96), 767–770. | MR

[17] MacLane S., Birkhoff G.: Algebra. The MacMillan Co., London, 1970. | MR

[18] Mawhin J.: Introduction a l’Analyse. Cabay, Louvain-la-Neuve, 1983.

[19] McLeod R. M.: The Generalized Riemann Integral. Carus Math. Monogr. 20, The Math. Ass. of America, 1980. | MR | Zbl

[20] McShane E. J.: A unified theory of integration. Amer. Math. Monthly 80 (1973), 349–359. | MR | Zbl

[21] Pfeffer W. F.: The Riemann Approach to Integration. Cambridge, 1993. | MR | Zbl

[22] Schwabik S.: The Perron integral in ordinary differential equations. Differential Integral Equations 6 (4) (1993), 863–882. | MR | Zbl

[23] Schwabik S.: Abstract Perron-Stieltjes integral. Math. Bohem. 121 (4), (1996), 425–447. | MR | Zbl

[24] Tvrdý M.: Linear integral equations in the space of regulated functions. Math. Bohem. 123 (2), (1998), 177–212. | MR | Zbl