Asymptotic estimation of the convergence of solutions of the equation $\dot x(t)=b(t) x(t-\tau (t))$
Archivum mathematicum, Tome 37 (2001) no. 4, pp. 279-287 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The main result of the present paper is obtaining new inequalities for solutions of scalar equation $\dot{x}(t)=b(t)x(t-\tau (t))$. Except this the interval of transient process is computed, i.e. the time is estimated, during which the given solution $x(t)$ reaches an $\varepsilon $ - neighbourhood of origin and remains in it.
The main result of the present paper is obtaining new inequalities for solutions of scalar equation $\dot{x}(t)=b(t)x(t-\tau (t))$. Except this the interval of transient process is computed, i.e. the time is estimated, during which the given solution $x(t)$ reaches an $\varepsilon $ - neighbourhood of origin and remains in it.
Classification : 34K20, 34K25
Keywords: stability of trivial solution; estimation of convergence of nontrivial solutions
@article{ARM_2001_37_4_a3,
     author = {Dibl{\'\i}k, Josef and Khusainov, Denys},
     title = {Asymptotic estimation of the convergence of solutions of the equation $\dot x(t)=b(t) x(t-\tau (t))$},
     journal = {Archivum mathematicum},
     pages = {279--287},
     year = {2001},
     volume = {37},
     number = {4},
     mrnumber = {1879450},
     zbl = {1090.34059},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2001_37_4_a3/}
}
TY  - JOUR
AU  - Diblík, Josef
AU  - Khusainov, Denys
TI  - Asymptotic estimation of the convergence of solutions of the equation $\dot x(t)=b(t) x(t-\tau (t))$
JO  - Archivum mathematicum
PY  - 2001
SP  - 279
EP  - 287
VL  - 37
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2001_37_4_a3/
LA  - en
ID  - ARM_2001_37_4_a3
ER  - 
%0 Journal Article
%A Diblík, Josef
%A Khusainov, Denys
%T Asymptotic estimation of the convergence of solutions of the equation $\dot x(t)=b(t) x(t-\tau (t))$
%J Archivum mathematicum
%D 2001
%P 279-287
%V 37
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2001_37_4_a3/
%G en
%F ARM_2001_37_4_a3
Diblík, Josef; Khusainov, Denys. Asymptotic estimation of the convergence of solutions of the equation $\dot x(t)=b(t) x(t-\tau (t))$. Archivum mathematicum, Tome 37 (2001) no. 4, pp. 279-287. http://geodesic.mathdoc.fr/item/ARM_2001_37_4_a3/

[1] Bellman R., Cooke K. L.: Differential-Difference Equations. Acad. Press, New-York-London, 1963. | MR | Zbl

[2] Čermák J.: The asymptotic bounds of solutions of linear delay systems. J. Math. Anal. Appl. 225 (1998), 373–338. | MR

[3] Diblík J.: Stability of the trivial solution of retarded functional equations. Differ. Uravn. 26 (1990), 215–223. (In Russian).

[4] Elsgolc L. E., Norkin S. B.: Introduction to the Theory of Differential Equations with Deviating Argument. Nauka, Moscow, 1971. (In Russian). | MR

[5] Györi I., Pituk M.: Stability criteria for linear delay differential equations. Differential Integral Equations 10 (1997), 841–852. | MR | Zbl

[6] Hale J., Lunel S. M. V.: Introduction to Functional Differential Equations. Springer-Verlag, 1993. | MR | Zbl

[7] Kolmanovskij V., Myshkis A.: Applied Theory of Functional Differential Equations. Kluwer Acad. Publ., 1992. | MR | Zbl

[8] Kolmanovskij V., Myshkis A.: Introduction to the Theory and Applications of Functional Differential Equations. Kluwer Acad. Publ., 1999. | MR | Zbl

[9] Kolmanovskij V. B., Nosov V. R.: Stability and Periodic Modes of Regulated Systems with Delay. Nauka, Moscow, 1981. (In Russian).

[10] Krasovskii N. N.: Stability of Motion. Stanford Univ. Press, 1963. | MR | Zbl

[11] Krisztin T.: Asymptotic estimation for functional differential equations via Lyapunov functions. Colloq. Math. Soc. János Bolyai, Qualitative Theory of Differential Equations, Szeged, Hungary, 1988, 365–376. | MR

[12] Myshkis A. D.: Linear Differential Equations with Delayed Argument. Nauka, Moscow, 1972. (In Russian). | MR

[13] Pituk M.: Asymptotic behavior of solutions of differential equation with asymptotically constant delay. Nonlinear Anal. 30 (1997), 1111–1118. | MR

[14] Razumikhin B. S.: Stability of Hereditary Systems. Nauka, Moscow, 1988. (In Russian). | MR