Keywords: Lyapunov exponents; stochastic differential equations; semi-simple Lie groups; flag manifolds
@article{ARM_2001_37_3_a3,
author = {Ruffino, Paulo R. C. and San Martin, Luiz A. B.},
title = {Lyapunov exponents for stochastic differential equations on semi-simple {Lie} groups},
journal = {Archivum mathematicum},
pages = {207--231},
year = {2001},
volume = {37},
number = {3},
mrnumber = {1860184},
zbl = {1090.60054},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2001_37_3_a3/}
}
TY - JOUR AU - Ruffino, Paulo R. C. AU - San Martin, Luiz A. B. TI - Lyapunov exponents for stochastic differential equations on semi-simple Lie groups JO - Archivum mathematicum PY - 2001 SP - 207 EP - 231 VL - 37 IS - 3 UR - http://geodesic.mathdoc.fr/item/ARM_2001_37_3_a3/ LA - en ID - ARM_2001_37_3_a3 ER -
Ruffino, Paulo R. C.; San Martin, Luiz A. B. Lyapunov exponents for stochastic differential equations on semi-simple Lie groups. Archivum mathematicum, Tome 37 (2001) no. 3, pp. 207-231. http://geodesic.mathdoc.fr/item/ARM_2001_37_3_a3/
[1] Arnold L., Kliemann W., Oeljeklaus E.: Lyapunov exponents of linear stochastic systems. In Lyapunov Exponents (Eds. L. Arnold and W. Wihstutz), Lecture Notes Math. - Springer 1186 (1986), 85–128. | MR | Zbl
[2] Arnold L., Oeljeklaus E., Pardoux E.: Almost sure and moment stability for linear Itô equations. In Lyapunov Exponents (Eds. L. Arnold and W. Wihstutz), Lecture Notes Math. - Springer 1186 (1986), 129–159. | MR | Zbl
[3] Arnold L., Imkeller P.: Furstenberg-Khasminskii formulas for Lyapunov exponents via antecipative calculus. Stochastics and Stochastics Reports, 54 (1+2) (1995), 127–168. | MR
[4] Baxendale P. H.: Asymptotic behavior of stochastic flows of diffeomorphisms: Two case studies. Probab. Theory Related Fields, 73 (1986), 51–85. | MR
[5] Baxendale P. H.: The Lyapunov spectrum of a stochastic flow of diffeomorphisms. In Lyapunov Exponents (Eds. L. Arnold and W. Wihstutz), Lecture Notes Math. - Springer 1186 (1986), 322–337. | MR | Zbl
[6] Borel A.: Kählerian coset spaces of semi-simple Lie groups. Proc. Nat. Acad. Sci. 40 (1954), 1147–1151. | MR
[7] Carverhill A. P.: Flows of stochastic dynamical systems: Ergodic Theory. Stochastics 14 (1985), 273–317. | MR | Zbl
[8] Carverhill A. P.: A Formula for the Lyapunov numbers of a stochastic flow. Application to a perturbation theorem. Stochastics 14 (1985), 209–226. | MR | Zbl
[9] Carverhill A. P.: A non-random Lyapunov spectrum for non-linear stochastic systems. Stochastics 17 (1986), 253–287. | MR
[10] Carverhill A. P., Elworthy K. D.: Lyapunov exponents for a stochastic analogue of the geodesic flow. Trans. Amer. Math. Soc. 295 (1986), 85–105. | MR | Zbl
[11] Duistermaat J. J., Kolk J. A. C., Varadarajan V.: Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups. Compositio Math. 49 (1983), 309–398. | MR | Zbl
[12] Furstenberg H., Kesten H.: Products of random matrices. Ann. Math. Stat. 31 (1960), 457–469. | MR | Zbl
[13] Guivarc’h Y., Raugi A.: Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence. Z. Wahrscheinlinchkeitstheor. Verw. Geb. 69 (1985), 187–242. | MR | Zbl
[14] Helgason S.: Differential geometry, Lie groups and symmetric spaces. Academic Press (1978). | MR | Zbl
[15] Ikeda N., Watanabe S.: Stochastic differential equations and diffusion processes. North-Holland (1981). | MR | Zbl
[16] Khashminskii R. Z.: Stochastic stability of differential equations. Sijthoff and Noordhoff, Alphen (1980). | MR
[17] Kobayashi S., Nomizu K.: Foundations of differential geometry. Interscience Publishers (1963 and 1969). | MR | Zbl
[18] Liao M.: Stochastic flows on the boundaries of Lie groups. Stochastics Stochastics Rep. 39 (1992), 213–237. | MR | Zbl
[19] Liao M.: Liapunov Exponents of Stochastic Flows. Ann. Probab. 25 (1997), 1241–1256. | MR
[20] Liao M.: Invariant diffusion processes in Lie groups and stochastic flows. Proc. of Symposia in Pure Math. 57 (1995), 575–591. | MR | Zbl
[21] Malliavin M. P., Malliavin P.: Factorisations et lois limites de la diffusion horizontale au-dessus d’un espace Riemannien symmetrique. Lecture Notes Math. 404 (1974), 164–217. | MR
[22] Oseledec V. I.: A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19 (1968), 197–231. | MR
[23] Ruelle D.: Ergodic theory of differentiable dynamical systems. I.H.E.S. – Publ. Math. 50, (1979), 275–306. | MR | Zbl
[24] San Martin L. A. B., Arnold L.: A Control problem related to the Lyapunov spectrum of stochastic flows. Mat. Apl. Comput. 5 (1986), 31–64. | MR | Zbl
[25] Sussmann H., Jurdjevic V.: Controllability of nonlinear systems. J. Differential Equations 12 (1972), 95–116. | MR
[26] Taylor J. C.: The Iwasawa decomposition and the limiting behavior of Brownian motion on a symmetric space of non-compact type. Contemp. Math. AMS 73 (1988), 303–302. | MR
[27] Warner G.: Harmonic Analysis on Semi-simple Lie Groups. Springer-Verlag (1972). | Zbl