Coincidence points and $R$-weakly commuting maps
Archivum mathematicum, Tome 37 (2001) no. 3, pp. 179-183 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we extend the concept of $R$-weak commutativity to the setting of single-valued and multivalued mappings. We also establish a coincidence theorem for pairs of $R$-weakly commuting single-valued and multivalued mappings satisfying a contractive type condition.
In this paper we extend the concept of $R$-weak commutativity to the setting of single-valued and multivalued mappings. We also establish a coincidence theorem for pairs of $R$-weakly commuting single-valued and multivalued mappings satisfying a contractive type condition.
Classification : 54H25
Keywords: metric space; multivalued mapping; coincidence point; $R$-weakly commuting map
@article{ARM_2001_37_3_a1,
     author = {Shahzad, Naseer and Kamran, Tayyab},
     title = {Coincidence points and $R$-weakly commuting maps},
     journal = {Archivum mathematicum},
     pages = {179--183},
     year = {2001},
     volume = {37},
     number = {3},
     mrnumber = {1860182},
     zbl = {1090.54040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2001_37_3_a1/}
}
TY  - JOUR
AU  - Shahzad, Naseer
AU  - Kamran, Tayyab
TI  - Coincidence points and $R$-weakly commuting maps
JO  - Archivum mathematicum
PY  - 2001
SP  - 179
EP  - 183
VL  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2001_37_3_a1/
LA  - en
ID  - ARM_2001_37_3_a1
ER  - 
%0 Journal Article
%A Shahzad, Naseer
%A Kamran, Tayyab
%T Coincidence points and $R$-weakly commuting maps
%J Archivum mathematicum
%D 2001
%P 179-183
%V 37
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2001_37_3_a1/
%G en
%F ARM_2001_37_3_a1
Shahzad, Naseer; Kamran, Tayyab. Coincidence points and $R$-weakly commuting maps. Archivum mathematicum, Tome 37 (2001) no. 3, pp. 179-183. http://geodesic.mathdoc.fr/item/ARM_2001_37_3_a1/

[1] Beg, I. and Azam, A.: Fixed points of asymptotically regular multivalued mappings. J. Austral. Math. Soc. Ser. A 53 (1992), 313–326. | MR

[2] Cho, Y. J., Fisher, B. and Jeong, G. S.: Coincidence theorems for nonlinear hybrid contractions. Internat. J. Math. Math. Sci. 20(2) (1997), 249–256. | MR

[3] Hadzic, O.: A coincidence theorem for multivalued mappings in metric spaces. Studia Univ. Babeş-Bolyai Math. XXVI(3) (1981), 65–67. | MR | Zbl

[4] Jungck, G.: Compatible mappings and common fixed points. Internat. J. Math. Math. Sci. 9 (4) (1986), 771–779. | MR | Zbl

[5] Kaneko, H.: Single-valued and multi-valued $f$-contractions. Boll. Un. Mat. Ital. Ser. A 4 (1985), 29–33. | MR | Zbl

[6] Kaneko, H. and Sessa, S.: Fixed point theorems for compatible multivalued and single valued mappings. Internat. J. Math. Math. Sci. 12(2) (1989), 257–262. | MR

[7] Nadler, S.: Multivalued contraction mappings. Pacific J. Math. 20 (1969), 475–488. | MR

[8] Pant, R. P.: Common fixed points of noncommuting mapping. J. Math. Anal. Appl. 188 (1994), 436–440. | MR

[9] Rashwan, R. A.: A coincidence theorem for contactive type multivalued mappings. J. Egyptian Math. Soc. 5 (1) (1997), 47–55. | MR