Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold
Archivum mathematicum, Tome 37 (2001) no. 2, pp. 143-160 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $M$ be a differentiable manifold with a pseudo-Riemannian metric $g$ and a linear symmetric connection $K$. We classify all natural (in the sense of [KMS]) 0-order vector fields and 2-vector fields on $TM$ generated by $g$ and $K$. We get that all natural vector fields are of the form \[ E(u)=\alpha (h(u))\, u^H + \beta (h(u))\, u^V\,, \] where $u^V$ is the vertical lift of $u\in T_xM$, $u^H$ is the horizontal lift of $u$ with respect to $K$, $h(u)= 1/2 g(u,u)$ and $\alpha ,\beta $ are smooth real functions defined on $R$. All natural 2-vector fields are of the form \[ \Lambda (u) = \gamma _1(h(u))\, \Lambda (g,K) + \gamma _2(h(u))\,u^H\wedge u^V\,, \] where $\gamma _1$, $\gamma _2$ are smooth real functions defined on $R$ and $\Lambda (g,K)$ is the canonical 2-vector field induced by $g$ and $K$. Conditions for $(E,\Lambda )$ to define a Jacobi or a Poisson structure on $TM$ are disscused.
Let $M$ be a differentiable manifold with a pseudo-Riemannian metric $g$ and a linear symmetric connection $K$. We classify all natural (in the sense of [KMS]) 0-order vector fields and 2-vector fields on $TM$ generated by $g$ and $K$. We get that all natural vector fields are of the form \[ E(u)=\alpha (h(u))\, u^H + \beta (h(u))\, u^V\,, \] where $u^V$ is the vertical lift of $u\in T_xM$, $u^H$ is the horizontal lift of $u$ with respect to $K$, $h(u)= 1/2 g(u,u)$ and $\alpha ,\beta $ are smooth real functions defined on $R$. All natural 2-vector fields are of the form \[ \Lambda (u) = \gamma _1(h(u))\, \Lambda (g,K) + \gamma _2(h(u))\,u^H\wedge u^V\,, \] where $\gamma _1$, $\gamma _2$ are smooth real functions defined on $R$ and $\Lambda (g,K)$ is the canonical 2-vector field induced by $g$ and $K$. Conditions for $(E,\Lambda )$ to define a Jacobi or a Poisson structure on $TM$ are disscused.
Classification : 53C50, 53D17, 58A20, 58A32
Keywords: Poisson structure; pseudo–Riemannian manifold; natural operator
@article{ARM_2001_37_2_a5,
     author = {Jany\v{s}ka, Josef},
     title = {Natural vector fields and 2-vector fields on the tangent bundle of a {pseudo-Riemannian} manifold},
     journal = {Archivum mathematicum},
     pages = {143--160},
     year = {2001},
     volume = {37},
     number = {2},
     mrnumber = {1838411},
     zbl = {1090.58007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2001_37_2_a5/}
}
TY  - JOUR
AU  - Janyška, Josef
TI  - Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold
JO  - Archivum mathematicum
PY  - 2001
SP  - 143
EP  - 160
VL  - 37
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2001_37_2_a5/
LA  - en
ID  - ARM_2001_37_2_a5
ER  - 
%0 Journal Article
%A Janyška, Josef
%T Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold
%J Archivum mathematicum
%D 2001
%P 143-160
%V 37
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2001_37_2_a5/
%G en
%F ARM_2001_37_2_a5
Janyška, Josef. Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold. Archivum mathematicum, Tome 37 (2001) no. 2, pp. 143-160. http://geodesic.mathdoc.fr/item/ARM_2001_37_2_a5/

[1] Janyška J.: Remarks on symplectic and contact 2–forms in relativistic theories. Bollettino U.M.I. (7) 9–B (1995), 587–616. | MR | Zbl

[2] Janyška J.: Natural symplectic structures on the tangent bundle of a space-time. Proceedings of the Winter School Geometry and Topology (Srní, 1995), Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II 43 (1996), pp. 153–162. | MR

[3] Janyška J.: Natural Poisson and Jacobi structures on the tangent bundle of a pseudo-Riemannian manifold. preprint 2000. | MR | Zbl

[4] Kolář I., Michor P. W., Slovák J.: Natural Operations in Differential Geometry. Springer–Verlag 1993. | MR

[5] Kowalski O., Sekizawa M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles - a classification. Bull. Tokyo Gakugei Univ., Sect.IV 40 (1988), pp. 1–29. | MR | Zbl

[6] Krupka D., Janyška J.: Lectures on Differential Invariants. Folia Fac. Sci. Nat. Univ. Purkynianae Brunensis, Brno 1990. | MR

[7] Libermann P., Marle, Ch. M.: Symplectic Geometry and Analytical Mechanics. Reidel Publ., Dordrecht 1987. | MR | Zbl

[8] Lichnerowicz A.: Les variétés de Jacobi et leurs algèbres de Lie associées. J. Math. Pures et Appl., 57 (1978), pp. 453–488. | MR | Zbl

[9] Nijenhuis A.: Natural bundles and their general properties. Diff. Geom., in honour of K. Yano, Kinokuniya, Tokyo 1972, pp. 317–334. | MR | Zbl

[10] Sekizawa M.: Natural transformations of vector fields on manifolds to vector fields on tangent bundles. Tsukuba J. Math. 12 (1988), pp. 115–128. | MR | Zbl

[11] Terng C. L.: Natural vector bundles and natural differential operators. Am. J. Math. 100 (1978), pp. 775–828. | MR | Zbl

[12] Vaisman I.: Lectures on the Geometry of Poisson Manifolds. Birkhäuser, Verlag 1994. | MR | Zbl