Keywords: best approximation; common fixed point; f-nonexpansive map
@article{ARM_2001_37_1_a8,
author = {Latif, Abdul},
title = {A result on best approximation in $p$-normed spaces},
journal = {Archivum mathematicum},
pages = {71--75},
year = {2001},
volume = {37},
number = {1},
mrnumber = {1822766},
zbl = {1068.41055},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a8/}
}
Latif, Abdul. A result on best approximation in $p$-normed spaces. Archivum mathematicum, Tome 37 (2001) no. 1, pp. 71-75. http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a8/
[1] Brosowski B.: Fixpunktsatze in der approximations theorie. Mathematica (Cluj) 11 (1969), 195–220. | MR
[2] Carbone A.: Applications of fixed point theorems. Jnanabha 19 (1989), 149–155. | MR | Zbl
[3] Dotson W. G.: Fixed point theorems for nonexpansive mappings on star-shaped subsets of Banach spaces. J. London Math. Soc. (2) 4 (1972), 408–410. | MR
[4] Hicks T. L., Humphries M. D.: A note on fixed point theorems. J. Approx. Theory 34 (1982), 221–225. | MR | Zbl
[5] Jungck G.: Commuting mappings and fixed points. Amer. Math. Monthly 83 (1976), 261–263. | MR | Zbl
[6] Jungck G., Sessa S.: Fixed point theorems in best approximation theory. Math. Japon. 42 (1995), 249–252. | MR | Zbl
[7] Kirk W. A.: Fixed point theory for nonexpansive mappings. Lecture Notes in Math. 886 (1981), 484–505. | MR | Zbl
[8] Khan L. A., Latif A.: On best approximation in $p$-normed spaces. submitted.
[9] Köthe G.: Topological vector Spaces I. Springer-Verlag, Berlin, 1969. | MR | Zbl
[10] Lami Dozo E.: Centres asymptotiques dans certains F-espaces. Boll. Un. Mat. Ital. B(5) 17 (1980), 740–747. | MR | Zbl
[11] Meinardus G. : Invarianze bei Linearen Approximationen. Arch. Rational Mech. Anal. 14 (1963), 301–303. | MR
[12] Opial Z.: Weak convergence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967), 531–537. | MR
[13] Rudin W.: Functional Analysis. (second edition), McGraw-Hill, New York, 1991. | MR | Zbl
[14] Singh S. P.: An application of a fixed point theorem to approximation theory. J. Approx. Theory 25 (1979), 89–90. | MR | Zbl