Keywords: elliptic system; Leray-Schauder degree; maximum principle
@article{ARM_2001_37_1_a7,
author = {Zuluaga, Mario},
title = {Nonzero and positive solutions of a superlinear elliptic system},
journal = {Archivum mathematicum},
pages = {63--70},
year = {2001},
volume = {37},
number = {1},
mrnumber = {1822763},
zbl = {1090.35525},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a7/}
}
Zuluaga, Mario. Nonzero and positive solutions of a superlinear elliptic system. Archivum mathematicum, Tome 37 (2001) no. 1, pp. 63-70. http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a7/
[1] Adams R.: Sobolev Spaces. Academic Press, 1975. | MR | Zbl
[2] Brown K. J.: Spatially inhomogeneous steady-state solutions for systems of equations describing interacting populations. J. of Math. Anal. and Appl. 95 (1983), 251–264. | MR | Zbl
[3] Costa D. & Magalhães: A variational approach to subquadratic perturbations of elliptic systems. J. Differential Equations 111 (1994), No. 1, July 1, 103–122. | MR
[4] De Figueiredo D. & Mitidieri E.: A maximum principle for an elliptic system and applications to semilinear problems. SIAM J. Math. Anal. 17 (1986), 836–849. | MR
[5] Fleckinger J., Hernández J. & Thelin F. de: On maximum principle and existence of positive solutions for some cooperative elliptic systems. Differential and Integral Equations 8 (1995), 69–85. | MR
[6] Krasnosel’skii M.: Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon Press, 1964. | MR
[7] Krasnosels’kii M. & Zabreico F.: Geometrical Methods of Nonlinear Analysis. Springer-Verlag, 1984. | MR
[8] Lazer A. & Mckena P. J.: On steady-state solutions of a system of reaction-diffusion equations from biology. Nonlinear Anal. 6 (1982), 523–530. | MR
[9] Lin F. H.: On the elliptic equation . $D_{i}\left[ a_{ij}D_{j}U\right] -k\left( x\right) U+k\left( x\right) U^{p}=0,$ Proc. Amer. Math. Soc. 95 (1985), 219–226. | MR | Zbl
[10] Mitidieri E.: Nonexistence of positive solutions of semilinear elliptic systems in . $\mathbb{R}^{n},$ Differential Integral Equations (in press). | MR | Zbl
[11] Mitidieri E.: A Rellich type identity and applications. Comm. Partial Differential Equations 18 (1993), 125–151. | MR | Zbl
[12] Naito M.: A note on bounded positive entire solutions of semilinear elliptic equations. Hiroshima Math. J. 14 (1984), 211–214. | MR | Zbl
[13] Ni W. M.: On the elliptic equation $\Delta u+K \left( x\right) u^{\frac{n+2}{n-2}}=0,$ its generalizations and applications in geometry. Indiana Univ. Math. J. 31 (1982), 493–529. | MR
[14] Pucci P. & Serrin J.: A general variational identity. Indiana Univ. Math. J. 35 (1986), 681–703. | MR
[15] Rothe F.: Global existence of branches of stationary solutions for a system of reaction-diffusion equations from biology. Nonlinear Anal. 5 (1981), 487–498. | MR | Zbl
[16] Smoller J.: Shock Waves And Reaction-Diffusion Equations. Springer-Verlag, 1983. | MR | Zbl
[17] Soto H. & Yarur C.: Some existence results of semilinear elliptic equations. Rendiconti di Matematica 15 (1995), 109–123. | MR
[18] Yarur C.: Nonexistence of positive solutions for a class of semilinear elliptic systems. Electron. J. Differential Equations 1996 (1996), No. 08, 1–22. | MR
[19] Zuluaga M.: On a nonlinear elliptic system: resonance and bifurcation cases. Comment. Math. Univ. Carolin. 40 (1999), No. 4, 701–711. | MR | Zbl
[20] Zuluaga M.: A nonlinear undecoupling elliptic system at resonance. Russian J. Math. Phys. 6 (1999), No. 3, 353–362. | MR | Zbl
[21] Zuluaga M.: Nonzero solutions of a nonlinear elliptic system at resonance. Nonlinear Anal. 31 (1998), No. 3/4, 445–454. | MR | Zbl