Nonzero and positive solutions of a superlinear elliptic system
Archivum mathematicum, Tome 37 (2001) no. 1, pp. 63-70 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we consider the existence of nonzero solutions of an undecoupling elliptic system with zero Dirichlet condition. We use Leray-Schauder Degree Theory and arguments of Measure Theory. We will show the existence of positive solutions and we give applications to biharmonic equations and the scalar case.
In this paper we consider the existence of nonzero solutions of an undecoupling elliptic system with zero Dirichlet condition. We use Leray-Schauder Degree Theory and arguments of Measure Theory. We will show the existence of positive solutions and we give applications to biharmonic equations and the scalar case.
Classification : 35B05, 35J45, 35J55, 35J60, 47H11, 47N20
Keywords: elliptic system; Leray-Schauder degree; maximum principle
@article{ARM_2001_37_1_a7,
     author = {Zuluaga, Mario},
     title = {Nonzero and positive solutions of a superlinear elliptic system},
     journal = {Archivum mathematicum},
     pages = {63--70},
     year = {2001},
     volume = {37},
     number = {1},
     mrnumber = {1822763},
     zbl = {1090.35525},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a7/}
}
TY  - JOUR
AU  - Zuluaga, Mario
TI  - Nonzero and positive solutions of a superlinear elliptic system
JO  - Archivum mathematicum
PY  - 2001
SP  - 63
EP  - 70
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a7/
LA  - en
ID  - ARM_2001_37_1_a7
ER  - 
%0 Journal Article
%A Zuluaga, Mario
%T Nonzero and positive solutions of a superlinear elliptic system
%J Archivum mathematicum
%D 2001
%P 63-70
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a7/
%G en
%F ARM_2001_37_1_a7
Zuluaga, Mario. Nonzero and positive solutions of a superlinear elliptic system. Archivum mathematicum, Tome 37 (2001) no. 1, pp. 63-70. http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a7/

[1] Adams R.: Sobolev Spaces. Academic Press, 1975. | MR | Zbl

[2] Brown K. J.: Spatially inhomogeneous steady-state solutions for systems of equations describing interacting populations. J. of Math. Anal. and Appl. 95 (1983), 251–264. | MR | Zbl

[3] Costa D. & Magalhães: A variational approach to subquadratic perturbations of elliptic systems. J. Differential Equations 111 (1994), No. 1, July 1, 103–122. | MR

[4] De Figueiredo D. & Mitidieri E.: A maximum principle for an elliptic system and applications to semilinear problems. SIAM J. Math. Anal. 17 (1986), 836–849. | MR

[5] Fleckinger J., Hernández J. & Thelin F. de: On maximum principle and existence of positive solutions for some cooperative elliptic systems. Differential and Integral Equations 8 (1995), 69–85. | MR

[6] Krasnosel’skii M.: Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon Press, 1964. | MR

[7] Krasnosels’kii M. & Zabreico F.: Geometrical Methods of Nonlinear Analysis. Springer-Verlag, 1984. | MR

[8] Lazer A. & Mckena P. J.: On steady-state solutions of a system of reaction-diffusion equations from biology. Nonlinear Anal. 6 (1982), 523–530. | MR

[9] Lin F. H.: On the elliptic equation . $D_{i}\left[ a_{ij}D_{j}U\right] -k\left( x\right) U+k\left( x\right) U^{p}=0,$ Proc. Amer. Math. Soc. 95 (1985), 219–226. | MR | Zbl

[10] Mitidieri E.: Nonexistence of positive solutions of semilinear elliptic systems in . $\mathbb{R}^{n},$ Differential Integral Equations (in press). | MR | Zbl

[11] Mitidieri E.: A Rellich type identity and applications. Comm. Partial Differential Equations 18 (1993), 125–151. | MR | Zbl

[12] Naito M.: A note on bounded positive entire solutions of semilinear elliptic equations. Hiroshima Math. J. 14 (1984), 211–214. | MR | Zbl

[13] Ni W. M.: On the elliptic equation $\Delta u+K \left( x\right) u^{\frac{n+2}{n-2}}=0,$ its generalizations and applications in geometry. Indiana Univ. Math. J. 31 (1982), 493–529. | MR

[14] Pucci P. & Serrin J.: A general variational identity. Indiana Univ. Math. J. 35 (1986), 681–703. | MR

[15] Rothe F.: Global existence of branches of stationary solutions for a system of reaction-diffusion equations from biology. Nonlinear Anal. 5 (1981), 487–498. | MR | Zbl

[16] Smoller J.: Shock Waves And Reaction-Diffusion Equations. Springer-Verlag, 1983. | MR | Zbl

[17] Soto H. & Yarur C.: Some existence results of semilinear elliptic equations. Rendiconti di Matematica 15 (1995), 109–123. | MR

[18] Yarur C.: Nonexistence of positive solutions for a class of semilinear elliptic systems. Electron. J. Differential Equations 1996 (1996), No. 08, 1–22. | MR

[19] Zuluaga M.: On a nonlinear elliptic system: resonance and bifurcation cases. Comment. Math. Univ. Carolin. 40 (1999), No. 4, 701–711. | MR | Zbl

[20] Zuluaga M.: A nonlinear undecoupling elliptic system at resonance. Russian J. Math. Phys. 6 (1999), No. 3, 353–362. | MR | Zbl

[21] Zuluaga M.: Nonzero solutions of a nonlinear elliptic system at resonance. Nonlinear Anal. 31 (1998), No. 3/4, 445–454. | MR | Zbl