On quadratically integrable solutions of the second order linear equation
Archivum mathematicum, Tome 37 (2001) no. 1, pp. 57-62 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Integral criteria are established for $\dim V_i(p)=0$ and $\dim V_i(p)=1, i\in \lbrace 0,1\rbrace $, where $V_i(p)$ is the space of solutions $u$ of the equation \[ u^{\prime \prime }+p(t)u=0 \] satisfying the condition \[ \int ^{+\infty }\frac{u^2(s)}{s^i}ds+\infty \,. \]
Integral criteria are established for $\dim V_i(p)=0$ and $\dim V_i(p)=1, i\in \lbrace 0,1\rbrace $, where $V_i(p)$ is the space of solutions $u$ of the equation \[ u^{\prime \prime }+p(t)u=0 \] satisfying the condition \[ \int ^{+\infty }\frac{u^2(s)}{s^i}ds+\infty \,. \]
Classification : 34C11
Keywords: second order linear equation; quadratically integrable solutions; vanishing at infinity solutions
@article{ARM_2001_37_1_a6,
     author = {Chantladze, T. and Kandelaki, N. and Lomtatidze, A.},
     title = {On quadratically integrable solutions of the second order linear equation},
     journal = {Archivum mathematicum},
     pages = {57--62},
     year = {2001},
     volume = {37},
     number = {1},
     mrnumber = {1822762},
     zbl = {1090.34537},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a6/}
}
TY  - JOUR
AU  - Chantladze, T.
AU  - Kandelaki, N.
AU  - Lomtatidze, A.
TI  - On quadratically integrable solutions of the second order linear equation
JO  - Archivum mathematicum
PY  - 2001
SP  - 57
EP  - 62
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a6/
LA  - en
ID  - ARM_2001_37_1_a6
ER  - 
%0 Journal Article
%A Chantladze, T.
%A Kandelaki, N.
%A Lomtatidze, A.
%T On quadratically integrable solutions of the second order linear equation
%J Archivum mathematicum
%D 2001
%P 57-62
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a6/
%G en
%F ARM_2001_37_1_a6
Chantladze, T.; Kandelaki, N.; Lomtatidze, A. On quadratically integrable solutions of the second order linear equation. Archivum mathematicum, Tome 37 (2001) no. 1, pp. 57-62. http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a6/

[1] Wintner A.: On the non-existence of conjugate points. Amer. J. Math. 73 (1951), 368–380. | MR

[2] Kneser A.: Untersuchung und asymptotische Darstellung der Integrale gewisser Differentialgleichungen bei grossen reelen Werten des Arguments. J. Reine Angew. Math. 116 (1896), 178–212.

[3] Kiguradze I.T., Chanturia T.A.: Asymptotic properties of solutions of nanautonomous ordinary differential equations. Kluwer Academic Publishers, Dordrecht–Boston–London, 1992.

[4] Kiguradze I.T., Shekhter B.L.: Singular boundary value problems for second order differential equations. in “Current Problems in Mathematics: Newest Results,” vol. 30, pp. 105–201, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyzn. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987. | MR

[5] Chantladze T., Kandelaki N., Lomtatidze A.: Oscillation and nonoscillation criteria for second order linear equations. Georgian Math. J. 6 (1999), No 5, 401–414. | MR