Inner amenability of Lau algebras
Archivum mathematicum, Tome 37 (2001) no. 1, pp. 45-55 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A concept of amenability for an arbitrary Lau algebra called inner amenability is introduced and studied. The inner amenability of a discrete semigroup is characterized by the inner amenability of its convolution semigroup algebra. Also, inner amenable Lau algebras are characterized by several equivalent statements which are similar analogues of properties characterizing left amenable Lau algebras.
A concept of amenability for an arbitrary Lau algebra called inner amenability is introduced and studied. The inner amenability of a discrete semigroup is characterized by the inner amenability of its convolution semigroup algebra. Also, inner amenable Lau algebras are characterized by several equivalent statements which are similar analogues of properties characterizing left amenable Lau algebras.
Classification : 43A07, 46H05
Keywords: Lau algebra; inner amenable; topological inner invariant mean
@article{ARM_2001_37_1_a5,
     author = {Nasr-Isfahani, R.},
     title = {Inner amenability of {Lau} algebras},
     journal = {Archivum mathematicum},
     pages = {45--55},
     year = {2001},
     volume = {37},
     number = {1},
     mrnumber = {1822765},
     zbl = {1068.43001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a5/}
}
TY  - JOUR
AU  - Nasr-Isfahani, R.
TI  - Inner amenability of Lau algebras
JO  - Archivum mathematicum
PY  - 2001
SP  - 45
EP  - 55
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a5/
LA  - en
ID  - ARM_2001_37_1_a5
ER  - 
%0 Journal Article
%A Nasr-Isfahani, R.
%T Inner amenability of Lau algebras
%J Archivum mathematicum
%D 2001
%P 45-55
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a5/
%G en
%F ARM_2001_37_1_a5
Nasr-Isfahani, R. Inner amenability of Lau algebras. Archivum mathematicum, Tome 37 (2001) no. 1, pp. 45-55. http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a5/

[1] Akeman C. A.: Operator algebras associated with Fuchsian groups. Houston J. Math. 7 (1981), 295–301. | MR

[2] Bekka M. A.: Amenable unitary representations of locally compact groups. Invent. Math. 100 (1990), 383–401. | MR | Zbl

[3] Bonsall F. F., Duncan J.: Complete normed algebras. Springer-Verlag, New York, 1973. | MR | Zbl

[4] Choda M., Choda M.: Fullness, simplicity and inner amenability. Math. Japon. 24 (1979), 235–246. | MR | Zbl

[5] Choda M.: The factors of inner amenable groups. Math. Japon. 24 (1979), 145–152. | MR | Zbl

[6] Choda M.: Effect of inner amenability on strong ergodicity. Math. Japon. 28 (1983), 109–115. | MR | Zbl

[7] Effros E. G.: Property $\Gamma $ and inner amenability. Proc. Amer. Math. Soc. 47 (1975), 483–486. | MR | Zbl

[8] Ghahramani F., Lau A. T.: Multipliers and modulus on Banach algebras related to locally compact groups. J. Funct. Anal. 150 (1997), 478–497. | MR | Zbl

[9] Kaniuth E., Markfort A.: The conjugation representation and inner amenability of discrete groups. J. Reine Angew. Math. 432 (1992), 23–37. | MR | Zbl

[10] Lau A. T.: Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups. Fund. Math. 118 (1983), 161–175. | MR

[11] Lau A. T.: Uniformly continuous functionals on Banach algebras. Colloq. Math. LI (1987), 195–205. | MR | Zbl

[12] Lau A. T., Paterson A. L.: Operator theoretic characterizations of [IN]-groups and inner amenability. Proc. Amer. Math. Soc. 102 (1988), 155–169. | MR | Zbl

[13] Lau A. T., Paterson A. L.: Inner amenable locally compact groups. Trans. Amer. Math. Soc. 325 (1991), 155–169. | MR | Zbl

[14] Lau A. T., Wong J. C.: Invariant subspaces for algebras of linear operators and amenable locally compact groups. Proc. Amer. Math. Soc. 102 (1988), 581–586. | MR | Zbl

[15] Ling J. M.: Inner amenable semigroups I. J. Math. Soc. Japan 49 (1997), 603–616. | MR | Zbl

[16] Losert V., Rindler H.: Asympototically central functions and invariant extensions of Dirac measures. Probability Measures on Groups, Proc. Conf., Oberwolfach, 1983. | MR

[17] Losert V., Rindler H.: Conjugate invariant means. Colloq. Math. 15 (1987), 221–225. | MR

[18] Namioka I.: Følner condition for amenable semigroups. Math. Scand. 15 (1964), 18–28. | MR

[19] Nasr-Isfahani R.: Factorization in some ideals of Lau algebras with application to semigroup algebras. Bull. Belg. Math. Soc. 7 (2000), 429–433. | MR

[20] Paschke W. L.: Inner amenability and conjugate operators. Proc. Amer. Math. Soc. 71 (1978), 117–118. | MR

[21] Paterson A. L.: Amenability. Mathematical Surveys and Monographs, No. 29, Amer. Math. Soc., Providence, R. I., 1988. | MR | Zbl

[22] Pier J. P.: Quasi-invariance interieure sur les groupes localement compacts. Actualités Math. (1982), 431–436. | Zbl

[23] Pier J. P.: Amenable locally compact groups. John Wiley and Sons, New York, 1984. | MR | Zbl

[24] Pier J. P.: Amenable Banach algebras. Pitman Res. Notes Math. Ser., London, 1988. | MR | Zbl

[25] Sakai S.: $C^*$-algebras and $W^*$-algebras. Springer-Verlag, Berlin and New York, 1971. | MR | Zbl

[26] Takesaki M.: Theory of operator algebras. Springer-Verlag, Berlin and New York, 1979. | MR | Zbl

[27] Watatani Y.: The character groups of amenable group $C^*$-algebras. Math. Japon. 24 (1979), 141–144. | MR | Zbl

[28] Yuan C. K.: The existence of inner invariant means on $L^{\infty }(G)$. J. Math. Anal. Appl. 130 (1988), 514–524. | MR