Inner amenability of Lau algebras
Archivum mathematicum, Tome 37 (2001) no. 1, pp. 45-55 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A concept of amenability for an arbitrary Lau algebra called inner amenability is introduced and studied. The inner amenability of a discrete semigroup is characterized by the inner amenability of its convolution semigroup algebra. Also, inner amenable Lau algebras are characterized by several equivalent statements which are similar analogues of properties characterizing left amenable Lau algebras.
A concept of amenability for an arbitrary Lau algebra called inner amenability is introduced and studied. The inner amenability of a discrete semigroup is characterized by the inner amenability of its convolution semigroup algebra. Also, inner amenable Lau algebras are characterized by several equivalent statements which are similar analogues of properties characterizing left amenable Lau algebras.
Classification : 43A07, 46H05
Keywords: Lau algebra; inner amenable; topological inner invariant mean
@article{ARM_2001_37_1_a5,
     author = {Nasr-Isfahani, R.},
     title = {Inner amenability of {Lau} algebras},
     journal = {Archivum mathematicum},
     pages = {45--55},
     year = {2001},
     volume = {37},
     number = {1},
     mrnumber = {1822765},
     zbl = {1068.43001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a5/}
}
TY  - JOUR
AU  - Nasr-Isfahani, R.
TI  - Inner amenability of Lau algebras
JO  - Archivum mathematicum
PY  - 2001
SP  - 45
EP  - 55
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a5/
LA  - en
ID  - ARM_2001_37_1_a5
ER  - 
%0 Journal Article
%A Nasr-Isfahani, R.
%T Inner amenability of Lau algebras
%J Archivum mathematicum
%D 2001
%P 45-55
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a5/
%G en
%F ARM_2001_37_1_a5
Nasr-Isfahani, R. Inner amenability of Lau algebras. Archivum mathematicum, Tome 37 (2001) no. 1, pp. 45-55. http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a5/