Keywords: Neumann elliptic problems; variational method; locally Lipschitz functional; p-Laplacian
@article{ARM_2001_37_1_a2,
author = {Halidias, Nikolaos},
title = {On {Neumann} elliptic problems with discontinuous nonlinearities},
journal = {Archivum mathematicum},
pages = {25--31},
year = {2001},
volume = {37},
number = {1},
mrnumber = {1822760},
zbl = {1090.35517},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a2/}
}
Halidias, Nikolaos. On Neumann elliptic problems with discontinuous nonlinearities. Archivum mathematicum, Tome 37 (2001) no. 1, pp. 25-31. http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a2/
[1] Ambrosetti A., Badiale M.: The dual variational principle and elliptic problems with discontinuous nonlinearities. J. Math. Anal. Appl. 140 (1989), No. 2, 363–273. | MR | Zbl
[2] Arcoya D., Calahorrano M.: Some discontinuous problems with a quasilinear operator. J. Math. Anal. Appl. 187 (1994), 1059–1072. | MR | Zbl
[3] Chang K. C.: Variational methods for non-differentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102–129. | MR | Zbl
[4] Clarke F.: Optimization and Nonsmooth Analysis. Wiley, New York (1983). | MR | Zbl
[5] Heikkila S., Lakshmikantham V.: Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations. Marcel Dekker, 1994. | MR
[6] Kenmochi N.: Pseudomonotone operators and nonlinear elliptic boundary value problems. J. Math. Soc. Japan 27 (1975), No. 1. | MR | Zbl
[7] Stuart C. A., Tolland J. F.: A variational method for boundary value problems with discontinuous nonlinearities. J. London Math. Soc. (2), 21 (1980), 319–328. | MR
[8] Tolksdorff P.: On quasilinear boundary value problems in domains with corners. Nonlinear Anal. 5 (1981), 721–735. | MR