Existence of extremal periodic solutions for nonlinear evolution inclusions
Archivum mathematicum, Tome 37 (2001) no. 1, pp. 9-23
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider a nonlinear evolution inclusion defined in the abstract framework of an evolution triple of spaces and we look for extremal periodic solutions. The nonlinear operator is only pseudomonotone coercive. Our approach is based on techniques of multivalued analysis and on the theory of operators of monotone-type. An example of a parabolic distributed parameter system is also presented.
We consider a nonlinear evolution inclusion defined in the abstract framework of an evolution triple of spaces and we look for extremal periodic solutions. The nonlinear operator is only pseudomonotone coercive. Our approach is based on techniques of multivalued analysis and on the theory of operators of monotone-type. An example of a parabolic distributed parameter system is also presented.
Classification : 34C25, 34G20, 34G25, 35K55, 35R70, 47N20
Keywords: evolution triple; compact embedding; exremal solution; measurable multifunction; pseudomonotone map; Kadec-Klee property; parabolic equation; p-Laplacian
@article{ARM_2001_37_1_a1,
     author = {Papageorgiou, Nikolaos S. and Yannakakis, Nikolaos},
     title = {Existence of extremal periodic solutions for nonlinear evolution inclusions},
     journal = {Archivum mathematicum},
     pages = {9--23},
     year = {2001},
     volume = {37},
     number = {1},
     mrnumber = {1822759},
     zbl = {1090.34577},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a1/}
}
TY  - JOUR
AU  - Papageorgiou, Nikolaos S.
AU  - Yannakakis, Nikolaos
TI  - Existence of extremal periodic solutions for nonlinear evolution inclusions
JO  - Archivum mathematicum
PY  - 2001
SP  - 9
EP  - 23
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a1/
LA  - en
ID  - ARM_2001_37_1_a1
ER  - 
%0 Journal Article
%A Papageorgiou, Nikolaos S.
%A Yannakakis, Nikolaos
%T Existence of extremal periodic solutions for nonlinear evolution inclusions
%J Archivum mathematicum
%D 2001
%P 9-23
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a1/
%G en
%F ARM_2001_37_1_a1
Papageorgiou, Nikolaos S.; Yannakakis, Nikolaos. Existence of extremal periodic solutions for nonlinear evolution inclusions. Archivum mathematicum, Tome 37 (2001) no. 1, pp. 9-23. http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a1/

[1] Hirano N.: Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces. Proc. Amer. Math. Soc. 120 (1994), 185–192. | MR | Zbl

[2] Hu S., Papageorgiou N.S.: On the existennce of periodic solutions for a class of nonlinear evolution equations. Boll. Un. Mat. Ital. (7) (1993),591–605. | MR

[3] Hu S., Papageorgiou N.S.: Handbook of Multivalued Analysis. Volume I: Theory. Kluwer, Dordrecht, The Netherlands‘ (1997) | MR | Zbl

[4] Kandilakis D., Papageorgiou N.S.: Periodic solutions for nonlinear evolution inclusions. Arch. Math.(Brno) 32 (1996), 195–209. | MR | Zbl

[5] Lakshmikantham V., Papageorgiou N.S.: Periodic solutions for nonlinear evolution inclusions. J. Comput. Appl. Math. 52 (1994), 277–286. | MR

[6] Lindqvist P.: On the equation $\div (|Du|^{p-2}Du)+\lambda |u|^{p-2}u=0$. Proc. Amer. Math. Soc. (1990), 157–164. | MR | Zbl

[7] Lions J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non-Lineaires. Dunod, Paris (1969). | MR | Zbl

[8] Papageorgiou N.S.: On the existence of solutions for nonlinear parabolic problems with discontinuities. J. Math. Anal. Appl. 205 (1997), 434-453. | MR

[9] Papageorgiou N.S., Papalini F., Renzacci F.: Existence of solutions and periodic solutions for nonlinear evolution inclusions. Rend. Circ. Mat. Palermo, II. Ser. 48, No. 2 (1999), 341–364. | MR | Zbl

[10] Vrabie I.: Periodic solutions for nonlinear evolution equations in a Banach space. Proc. Amer. Math. Soc. 109 (1990), 653–661. | MR | Zbl

[11] Zeidler E.: Nonlinear Functional Analysis and its Applications II. Springer Verlag, New York (1990). | MR | Zbl