Coupled fixed points of mixed monotone operators on probabilistic Banach spaces
Archivum mathematicum, Tome 37 (2001) no. 1, pp. 1-8 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The existence of minimal and maximal fixed points for monotone operators defined on probabilistic Banach spaces is proved. We obtained sufficient conditions for the existence of coupled fixed point for mixed monotone condensing multivalued operators.
The existence of minimal and maximal fixed points for monotone operators defined on probabilistic Banach spaces is proved. We obtained sufficient conditions for the existence of coupled fixed point for mixed monotone condensing multivalued operators.
Classification : 47H05, 47H10, 47S50
Keywords: probabilistic Banach space; monotone operator; fixed point
@article{ARM_2001_37_1_a0,
     author = {Beg, Ismat and Latif, Abdul and Ali, Rashid and Azam, Akbar},
     title = {Coupled fixed points of mixed monotone operators on probabilistic {Banach} spaces},
     journal = {Archivum mathematicum},
     pages = {1--8},
     year = {2001},
     volume = {37},
     number = {1},
     mrnumber = {1822758},
     zbl = {1068.47093},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a0/}
}
TY  - JOUR
AU  - Beg, Ismat
AU  - Latif, Abdul
AU  - Ali, Rashid
AU  - Azam, Akbar
TI  - Coupled fixed points of mixed monotone operators on probabilistic Banach spaces
JO  - Archivum mathematicum
PY  - 2001
SP  - 1
EP  - 8
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a0/
LA  - en
ID  - ARM_2001_37_1_a0
ER  - 
%0 Journal Article
%A Beg, Ismat
%A Latif, Abdul
%A Ali, Rashid
%A Azam, Akbar
%T Coupled fixed points of mixed monotone operators on probabilistic Banach spaces
%J Archivum mathematicum
%D 2001
%P 1-8
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a0/
%G en
%F ARM_2001_37_1_a0
Beg, Ismat; Latif, Abdul; Ali, Rashid; Azam, Akbar. Coupled fixed points of mixed monotone operators on probabilistic Banach spaces. Archivum mathematicum, Tome 37 (2001) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/ARM_2001_37_1_a0/

[1] Beg I., Rehman S., Shahzad N.: Fixed points of generalized contraction mappings on probabilistic metric spaces. Pakistan J. Statist. 8(2) (1992), 35–52. | MR | Zbl

[2] Bharucha-Reid A. T.: Fixed point theorems in probabilistic analysis. Bull. Amer. Math. Soc. 82 (1976), 641–657. | MR | Zbl

[3] Cain G. L., Jr., Kasriel R. H.: Fixed and periodic points of local contraction mappings on probabilistic metric spaces. Math. Systems Theory 9 (1970), 289–297. | MR

[4] Chang S. S.: Basic theory and applications of probabilistic metric spaces (I). App. Math. Mech. 9(2) (1988), 123–133. | MR

[5] Chang S. S., Cho Y. J., Kang S. M.: Probabilistic Metric Spaces and Nonlinear Operator Theory. Sichuan University Press, Chendgu, China, 1994.

[6] Chang S. S., Ma Y. H.: Coupled fixed points for mixed monotone condensing operators and existence theorem of the solutions for a class of functional equation arising in dynamic programming. J. Math. Anal. Appl. 160 (1991), 468–479. | MR

[7] Egbert R. J.: Products and quotients of probabilistic metric spaces. Pacific J. Math. 24 (1968), 437–455. | MR | Zbl

[8] Hadzic O.: Some theorems on the fixed points in probabilistic metric and random normed spaces. Boll. Un. Mat. Ital. B(6), 1-B (1982), 381–391. | MR | Zbl

[9] Hutson V., Pym J. S.: Applications of Functional Analysis and Operator Theory. Academic Press, London, 1980. | MR | Zbl

[10] Istratescu V. I.: Fixed Point Theory. D. Reidel Publishing Company, Dordrecht, 1988. | MR

[11] Menger K.: Statistical metric. Proc. Natl. Acad. Sci. USA, 28 (1942), 535–537. | MR

[12] Schweizer B., Sklar A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 313–334. | MR | Zbl

[13] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North-Holland Series in Probability and Applied Mathematics 5 1983. | MR | Zbl

[14] Sherwood H.: Complete probabilistic metric spaces. Z. Wahrsch. Verw. Gebiete 20 (1971), 117–128. | MR | Zbl

[15] Stojakovic M.: Fixed point theorems in probabilistic metric spaces. Kobe J. Math. 2(1) (1985), 1–9. | MR | Zbl

[16] Stojakovic M.: Common fixed point theorems in complete metric and probabilistic metric spaces. Bull. Austral. Math. Soc. 36 (1987), 73–88. | MR | Zbl

[17] Sun Y.: A fixed point theorem for monotone operators with applications. J. Math. Anal. Appl. 156 (1991), 240–252. | MR

[18] Serstnev A. N.: On the notion of random normed spaces. Dokl. Akad. Nauk 149 (1963), 280–283. | MR

[19] Tan N. X.: Generalized probabilistic metric spaces and fixed point theorems. Math. Nachr. 129 (1986), 205–218. | MR | Zbl