Existence of positive solutions of $n$-dimensional system of nonlinear differential equations entering into a singular point
Archivum mathematicum, Tome 36 (2000) no. 5, pp. 435-446 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34C05, 34D05
@article{ARM_2000_36_5_a9,
     author = {Dibl{\'\i}k, Josef and R\r{u}\v{z}i\v{c}kov\'a, Miroslava},
     title = {Existence of positive solutions of $n$-dimensional system of nonlinear differential equations entering into a singular point},
     journal = {Archivum mathematicum},
     pages = {435--446},
     year = {2000},
     volume = {36},
     number = {5},
     mrnumber = {1822812},
     zbl = {1090.34530},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a9/}
}
TY  - JOUR
AU  - Diblík, Josef
AU  - Růžičková, Miroslava
TI  - Existence of positive solutions of $n$-dimensional system of nonlinear differential equations entering into a singular point
JO  - Archivum mathematicum
PY  - 2000
SP  - 435
EP  - 446
VL  - 36
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a9/
LA  - en
ID  - ARM_2000_36_5_a9
ER  - 
%0 Journal Article
%A Diblík, Josef
%A Růžičková, Miroslava
%T Existence of positive solutions of $n$-dimensional system of nonlinear differential equations entering into a singular point
%J Archivum mathematicum
%D 2000
%P 435-446
%V 36
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a9/
%G en
%F ARM_2000_36_5_a9
Diblík, Josef; Růžičková, Miroslava. Existence of positive solutions of $n$-dimensional system of nonlinear differential equations entering into a singular point. Archivum mathematicum, Tome 36 (2000) no. 5, pp. 435-446. http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a9/

1. K. Balla: On solution of singular boundary problems for nonlinear systems of ordinary differential equations. Zh. vych. mat. i mat. fiz., 20 (1980), 909–922 (in Russian). | MR

2. J. Baštinec, J. Diblík: Three–point singular boundary-value problem for a system of three differential equations. Math. Communication, 3 (1998), 211–219. | MR

3. J. Diblík: On existence of O-curves of a singular system of differential equations. Math. Nachr., 122 (1985), 247–258 (in Russian). | MR

4. J. Diblík: On existence of solutions of a real system of ordinary differential equations, entering into a singular point. Ukrainian Math. J., 38 (1986), 701–706 (in Russian). | MR

5. J. Diblík: On existence of O - curves of systems of ordinary differential equations, that are asymptotically equal to a given curve. Differential Equations, 23 (1987), 2159 – 2161 (in Russian).

6. J. Diblík: Some asymptotic properties of solutions of certain classes of ordinary differential equations. J. Math. Anal. Appl., 165 (1992), 288–304. | MR

7. J. Diblík: On asymptotic behaviour of solutions of certain classes of ordinary differential equations. J. Diff. Equat., 95 (No 2), 203–217, 1992. | MR

8. J. Diblík, M. Růžičková: Existence of solutions of a nonlinear differential system of differential equations entering into a singular point. Studies of University in Žilina, Math. – Phys. Ser. 32 (1999), 11–19. | MR

9. Ph. Hartman: Ordinary differential equations. Second Edition, Birkhäuser, 1982. | MR

10. V.A. Chechyk: Investigations of systems ordinary differential equations with singularities. Trudy Moskovsk. Mat. Obsc., 8 (1959), 155–198 (in Russian). | MR

11. I.T. Kiguradze: Some singular boundary value problems for ordinary differential equations. Izd. Tbilisskovo univ., Tbilisi, 1975, 352 pp. (in Russian). | MR

12. N.B. Konyukhova: Singular Cauchy problems for systems of ordinary differential equations. Zh. vych. mat. i mat. fiz., 23 (1983), 629–645 (in Russian). | MR | Zbl

13. Chr. Nowak: Some remarks on a paper by Samimi on nonuniqueness criteria for ordinary differential equations. Appl. Anal., 47 (1992), 39–44. | MR | Zbl

14. D. O’Regan: Nonresonant nonlinear singular problems in the limit circle case. J. Math. Anal. Appl., 197 (1996), 708–725. | MR

15. M. Růžičková: The asymptotic properties of solutions of differential system of the form $g_i (x) y'_i = u_i (y_i ) + f_i (x, y_1 , . . . , y_n )$, $i = 1, 2, . . . , n$ in some neighbourhood of a singular point. Acta Univ. Palack. Olomuc. Fac. Rer. Nat., Math. 32 (1993), 151–158.

16. T. Ważewski: Sur un principe topologique de l’examen de l’ allure asymptotique des intégrales des équations différentielles ordinaires. Ann. de la Soc. Polon. de Mathèmatique, 20 (1947), (Krakow 1948), 279–313. | MR