Multistructures determined by differential rings
Archivum mathematicum, Tome 36 (2000) no. 5, pp. 429-434 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 12H05, 20N20, 26A24
@article{ARM_2000_36_5_a8,
     author = {Chvalina, Jan and Chvalinov\'a, Ludmila},
     title = {Multistructures determined by differential rings},
     journal = {Archivum mathematicum},
     pages = {429--434},
     year = {2000},
     volume = {36},
     number = {5},
     mrnumber = {1822811},
     zbl = {1090.12500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a8/}
}
TY  - JOUR
AU  - Chvalina, Jan
AU  - Chvalinová, Ludmila
TI  - Multistructures determined by differential rings
JO  - Archivum mathematicum
PY  - 2000
SP  - 429
EP  - 434
VL  - 36
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a8/
LA  - en
ID  - ARM_2000_36_5_a8
ER  - 
%0 Journal Article
%A Chvalina, Jan
%A Chvalinová, Ludmila
%T Multistructures determined by differential rings
%J Archivum mathematicum
%D 2000
%P 429-434
%V 36
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a8/
%G en
%F ARM_2000_36_5_a8
Chvalina, Jan; Chvalinová, Ludmila. Multistructures determined by differential rings. Archivum mathematicum, Tome 36 (2000) no. 5, pp. 429-434. http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a8/

1. Beránek J., Chvalina J.: From groups of linear functions to noncommutative transposition hypergroups. Dept. Math. Report Series, 7, University of South Bohemia 1999, 1 - 10.

2. Bloom W.R., Heyer H.: Harmonic Analysis of Probability Measures on Hypergroups. Walter de Gruyter, Berlin – New York, 1994. | MR

3. Borůvka O.: Linear Differential Transformations of the Second Order. English Univ. Press, London, 1971. | MR

4. Chvalina J.: Functional Graphs, Quasi-ordered Sets and Commutative Hypergroups. Masaryk University, Brno, 1995 (Czech).

5. Chvalina J., Chvalinová L.: State hypergroups of automata. Acta Math. Informat. Univ. Ostraviensis 4 (1996), 105–120. | MR | Zbl

6. Corsini P.: Prolegomena of Hypergroup Theory. Aviani Editore, Tricesimo, 1993. | MR | Zbl

7. Hort D.: Hypergroups and Ordered Sets. Thesis, Masaryk University, Brno, 1999.

8. Jantosciak J.: Transposition in hypergroups. VI. Internat. Congr. Alg. Hyperstructures and Appl., Democritus Univ. of Trace, Alexandroupolis (1966),77–84. | MR

9. Kaplansky I.: An Introduction to Differential Algebra. Hermann, Paris 1957. | MR | Zbl

10. Kolchin E.R.: Differential Algebraic Groups. Academic Press, London 1973. | MR

11. Moučka J.: Hypergroups determined by Automata and Ordered Sets. Thesis, Milit. Academy of Ground Forces, Vyškov 1997 (Czech).

12. Neuman F.: From local to global investigations of linear differential equations of the n-th order. Jahrbuch. Überblicke Math. 1984, 55–68. | Zbl

13. Neuman F.: Algebraic aspects of transformations with an application to differential equations. Nonlinear Analysis 40 (2000), 505–511. | MR | Zbl

14. Novotný M.: Ternary structures and groupoids. Czech. Math. J. 41 (1991),90–98. | MR

15. Rosenberg I.G.: Hypergroups and join spaces determined by relations. Italian J. Pure and Appl. Math. 4 (1998), 93–101. | MR | Zbl

16. Trimèche K.: Generalized Wavelets and Hypergroups. Gordon and Breach Science Publishers, Amsterdam 1997. | MR | Zbl