Linear differential equations with several unbounded delays
Archivum mathematicum, Tome 36 (2000) no. 5, pp. 421-427 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34K05, 34K25, 39B22
@article{ARM_2000_36_5_a7,
     author = {\v{C}erm\'ak, Jan},
     title = {Linear differential equations with several unbounded delays},
     journal = {Archivum mathematicum},
     pages = {421--427},
     year = {2000},
     volume = {36},
     number = {5},
     mrnumber = {1822810},
     zbl = {1090.34595},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a7/}
}
TY  - JOUR
AU  - Čermák, Jan
TI  - Linear differential equations with several unbounded delays
JO  - Archivum mathematicum
PY  - 2000
SP  - 421
EP  - 427
VL  - 36
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a7/
LA  - en
ID  - ARM_2000_36_5_a7
ER  - 
%0 Journal Article
%A Čermák, Jan
%T Linear differential equations with several unbounded delays
%J Archivum mathematicum
%D 2000
%P 421-427
%V 36
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a7/
%G en
%F ARM_2000_36_5_a7
Čermák, Jan. Linear differential equations with several unbounded delays. Archivum mathematicum, Tome 36 (2000) no. 5, pp. 421-427. http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a7/

1. Čermák J.: Note on simultaneous solutions of a system of Schröder’s equations. Math. Bohemica 120, 1995, 225–236. | MR

2. Čermák J.: The asymptotic bounds of solutions of linear delay systems, J. Math. Anal. Appl. 115. 1998, 373–388. | MR

3. Čermák J.: Asymptotic estimation for functional differential equations with several delays. Arch. Math. (Brno) 35, 1999, 337–345. | MR

4. Derfel G.: Functional-differential equations with compressed arguments and polynomial coefficients: Asymptotic of the solutions. J. Math. Anal. Appl. 193, 1995, 671–679. | MR

5. Diblík J.: Asymptotic equilibrium for a class of delay differential equations. Proc. of the Second International Conference on Difference equations (S. Elaydi, I. Győri, G. Ladas, eds.), 1995, 137–143. | MR

6. Iserles A.: On generalized pantograph functional-differential equation. European J. Appl. Math. 4, 1993, 1–38. | MR

7. Kato T., McLeod J. B.: The functional differential equation $y'(x) = a y(\lambda x) + b y(x). Bull. Amer. Math. Soc. 77, 1971, 891–937. | MR

8. Kuczma M., Choczewski B., Ger R.: Iterative Functional Equations. Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1990. | MR | Zbl

9. Lim E. B.: Asymptotic bounds of solutions of the functional differential equation $x'(t) = ax(\lambda t) + bx(t) + f (t)$, $0 < \lambda < 1$. SIAM J. Math. Anal. 9, 1978, 915–920. | MR

10. Liu Y.: Regular solutions of the Shabat equation. J. Differential Equations 154, 1999, 1–41. | MR | Zbl

11. Makay G., Terjéki J.: On the asymptotic behavior of the pantograph equations. E. J. Qualitative Theory of Diff. Equ 2, 1998, 1–12. | MR

12. Neuman F.: Simultaneous solutions of a system of Abel equations and differential equations with several deviations. Czechoslovak Math. J. 32 (107), 1982, 488–494. | MR | Zbl

13. Pandolfi L.: Some observations on the asymptotic behaviors of the solutions of the equation $x'(t) = A(t)x(\lambda t)+B(t)x(t)$, $\lambda > 0$. J. Math. Anal. Appl. 67, 1979, 483–489. | MR

14. Zdun M.: On simultaneous Abel equations. Aequationes Math. 38, 1989, 163–177. | MR | Zbl