Convergence tests for one scalar differential equation with vanishing delay
Archivum mathematicum, Tome 36 (2000) no. 5, pp. 405-414 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34K05, 34K25
@article{ARM_2000_36_5_a5,
     author = {Ba\v{s}tinec, Jarom{\'\i}r and Dibl{\'\i}k, Josef and \v{S}marda, Zden\v{e}k},
     title = {Convergence tests for one scalar differential equation with vanishing delay},
     journal = {Archivum mathematicum},
     pages = {405--414},
     year = {2000},
     volume = {36},
     number = {5},
     mrnumber = {1822808},
     zbl = {1090.34596},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a5/}
}
TY  - JOUR
AU  - Baštinec, Jaromír
AU  - Diblík, Josef
AU  - Šmarda, Zdeněk
TI  - Convergence tests for one scalar differential equation with vanishing delay
JO  - Archivum mathematicum
PY  - 2000
SP  - 405
EP  - 414
VL  - 36
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a5/
LA  - en
ID  - ARM_2000_36_5_a5
ER  - 
%0 Journal Article
%A Baštinec, Jaromír
%A Diblík, Josef
%A Šmarda, Zdeněk
%T Convergence tests for one scalar differential equation with vanishing delay
%J Archivum mathematicum
%D 2000
%P 405-414
%V 36
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a5/
%G en
%F ARM_2000_36_5_a5
Baštinec, Jaromír; Diblík, Josef; Šmarda, Zdeněk. Convergence tests for one scalar differential equation with vanishing delay. Archivum mathematicum, Tome 36 (2000) no. 5, pp. 405-414. http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a5/

1. O. Arino I. Györi, M. Pituk: Asymptotically diagonal delay differential systems. J. Math. Anal. Appl. 204(1996), 701–728. | MR

2. O. Arino, and M. Pituk: Convergence in asymptotically autonomouos functional differential equations. J. Math. Anal. Appl. 237(1999), 376–392. | MR

3. F.V. Atkinson, and J.R. Haddock: Criteria for asymptotic constancy of solutions of functional differential equations. J. Math. Anal. Appl. 91(1983), 410–423. | MR

4. R. Bellman, and K.L. Cooke: Differential-difference Equations. Mathematics in science and engineering, A series of Monographs and Textbooks, New York, London, Academic Press, 1963. | MR

5. J. Čermák: On the asymptotic behaviour of solutions of certain functional differential equations. Math. Slovaca 48(1998), 187–212. | MR

6. J. Čermák: The asymptotic bounds of solutions of linear delay systems. J. Math. Anal. Appl. 225(1998), 373–388. | MR

7. J. Čermák: Asymptotic estimation for functional differential equations with several delays. Arch. Math. 35(1999), 337–345. | MR

8. J. Čermák: Note on canonical forms for functional differential equations. Math. Pann. 11(2000), 29–39. | MR

9. J. Diblík: A criterion for convergence of solutions of homogeneous delay linear differential equations. Ann. Polon. Math. LXXII. 2(1999), 115–130. | MR

10. J. Diblík: Asymptotic representation of solutions of equation $\dot{y}(t) = \beta(t)[y(t) − y(t − \tau (t))]$. J. Math. Anal. Appl. 217(1998), 200–215.

11. I. Györi, M. Pituk: Comparison theorems and asymptotic equilibrium for delay differential and difference equations. Dynamic Systems and Appl. 5(1996), 277–302. | MR

12. I. Györi, M. Pituk: L^2 -perturbation of a linear delay differential equation. J. Math. Anal. Appl. 195(1995), 415–427. | MR

13. J. Hale, and S.V. Lunel: Introduction to Functional Differential Equations. Springer-Verlag, 1993. | MR

14. T. Krisztin: Asymptotic estimation for functional differential equations via Lyapunov functions. Colloquia Mathematica Societatis János Bolyai, 53, Qualitative theory of differential equations, Szeged, 1986, 1–12.

15. T. Krisztin: On the rate of convergence of solutions of functional differential equations. Funkcial. Ekvac. 29(1986), 1–10. | MR | Zbl

16. T. Krisztin: A note on the convergence of the solutions of a linear functional differential equation. J. Math. Anal. Appl. 145(1990), 17–25. | MR | Zbl

17. K. Murakami: Asymptotic constancy for systems of delay differential equations. Nonl. Analysis, Theory, Methods and Appl. 30(1997), 4595–4606. | MR | Zbl

18. S.N. Zhang: Asymptotic behaviour and structure of solutions for equation $\dot{x}(t) = p(t)[x(t) − x(t − 1)]$. J. Anhui University (Natural Science Edition) 2 (1981), 11–21. [In Chinese]