Some remarks about the nonoscillatory solutions
Archivum mathematicum, Tome 36 (2000) no. 5, pp. 617-622 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34C10
@article{ARM_2000_36_5_a28,
     author = {\v{S}vec, Marko and Hrici\v{s}\'akov\'a, Daniela},
     title = {Some remarks about the nonoscillatory solutions},
     journal = {Archivum mathematicum},
     pages = {617--622},
     year = {2000},
     volume = {36},
     number = {5},
     mrnumber = {1822831},
     zbl = {1090.34532},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a28/}
}
TY  - JOUR
AU  - Švec, Marko
AU  - Hricišáková, Daniela
TI  - Some remarks about the nonoscillatory solutions
JO  - Archivum mathematicum
PY  - 2000
SP  - 617
EP  - 622
VL  - 36
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a28/
LA  - en
ID  - ARM_2000_36_5_a28
ER  - 
%0 Journal Article
%A Švec, Marko
%A Hricišáková, Daniela
%T Some remarks about the nonoscillatory solutions
%J Archivum mathematicum
%D 2000
%P 617-622
%V 36
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a28/
%G en
%F ARM_2000_36_5_a28
Švec, Marko; Hricišáková, Daniela. Some remarks about the nonoscillatory solutions. Archivum mathematicum, Tome 36 (2000) no. 5, pp. 617-622. http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a28/

1. M. Švec: Sur une propriété des intégrales de l’equation $y^{(n)} + Q(x)y = 0$, $n = 3, 4$. Czechoslovak Math. J. 82 (1957), 450–462.

2. M. Švec: On various properties of the solutions of third and fourth order linear differential equations. in: Differential Equations and Their Applications (Proc. Conf., Prague 1962), Academic Press, New York, 1963, pp. 187–198. | MR

3. M. Medveď: Suffcient condition for the nonoscillation of the non-homogeneous linear n-th order differential equation. Mat. časopis 18 (1968), 99–104. | MR

4. J. E. Gehrman, T. L. Sherman: Asymptotic behaviour of solutions and their derivatives for linear differential equations. Rocky Mountains Journal of Mathematics 5 (1975), 275–282. | MR

5. G. Sansone: Equazioni differenziali nel campo reale. parte prima, Chap. II. 5, Seconda edizione, Bologna, (1948).

6. Ph. Hartman: Ordinary differential equations. John Wiley & Sons, New York, 1964. | MR | Zbl