Stability zones for discrete time Hamiltonian systems
Archivum mathematicum, Tome 36 (2000) no. 5, pp. 563-573 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 39A10
@article{ARM_2000_36_5_a23,
     author = {R\u{a}svan, Vladimir},
     title = {Stability zones for discrete time {Hamiltonian} systems},
     journal = {Archivum mathematicum},
     pages = {563--573},
     year = {2000},
     volume = {36},
     number = {5},
     mrnumber = {1822826},
     zbl = {1090.39503},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a23/}
}
TY  - JOUR
AU  - Răsvan, Vladimir
TI  - Stability zones for discrete time Hamiltonian systems
JO  - Archivum mathematicum
PY  - 2000
SP  - 563
EP  - 573
VL  - 36
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a23/
LA  - en
ID  - ARM_2000_36_5_a23
ER  - 
%0 Journal Article
%A Răsvan, Vladimir
%T Stability zones for discrete time Hamiltonian systems
%J Archivum mathematicum
%D 2000
%P 563-573
%V 36
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a23/
%G en
%F ARM_2000_36_5_a23
Răsvan, Vladimir. Stability zones for discrete time Hamiltonian systems. Archivum mathematicum, Tome 36 (2000) no. 5, pp. 563-573. http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a23/

References 1. M.G. Krein: Foundations of theory of $\lambda$-zones of stability of a canonical system of linear differential equations with periodic coeffcients. (in Russian). In ”In Memoriam A.A. Andronov”, pp. 413-98, USSR Acad.Publ. House, Moscow, 1955 (English version in AMS Translations 120(2): 1-70, 1983).

2. V.A. Yakubovich, V.M. Staržinskii: Linear differential equations with periodic coeffcients. (in Russian). Nauka Publ. House, Moscow, 1972 (English version by J.Wiley, 1975). | MR

3. M.G. Krein, V.A. Yakubovich: Hamiltonian Systems of Linear Differential Equations with Periodic Coeffcients. (in Russian). In ”Proceedings Int’l Conf. on Nonlin. Oscillations”, vol.1, Ukrainian SSR Acad. Publ. House, Kiev, pp. 277-305, 1963 (English version AMS Translations 120(2): 139-168, 1983). | MR

4. V.A. Yakubovich: Linear quadratic optimization problem and frequency domain theorem for periodic systems I. Siberian Math. Journ., 27, 4, pp. 186-200, 1986 (in Russian). | MR

V.A. Yakubovich: Linear quadratic optimization problem and frequency domain theorem for periodic systems II. Siberian Math. Journ., 31, 6, pp. 176-191, 1990 (in Russian). | MR

5. W. Kratz: Quadratic Functionals in Variational Analysis and Control Theory. Akademie Verlag, Berlin, 1995. | MR | Zbl

6. C.D. Ahlbrandt, A.C. Peterson: Discrete Hamiltonian systems: Difference Equations, Continued Fractions and Riccati Equations. Kluwer, Boston, 1996. | MR | Zbl

7. M. Bohner: Linear Hamiltonian Difference Systems: disconjugacy and Jacobi-type conditions. J. Math.Anal.Appl 199, pp. 804-826, 1996. | MR

8. M. Bohner, O. Došlý: Disconjugacy and transformations for symplectic systems. Rocky Mountain J. Math. 27, pp. 707-743, 1997. | MR

9. O. Došlý: Transformations of linear Hamiltonian difference systems and some of their applications. J. Math.Anal.Appl. 191, pp. 250-265, 1995. | MR

10. A. Halanay, V. Ionescu: Time - varying Discrete Hamiltonian Systems. Computers Math. Appl. 36, 10-12, pp. 307-326, 1998. | MR | Zbl

11. A. Halanay, Vl. Răsvan: Oscillations in Systems with Periodic Coeffcients and Sector-restricted Nonlinearities. in Operator Theory: Advances and Applications vol. 117, pp. 141-154, Birkhauser Verlag, Basel, 2000. | MR

12. B. Aulbach S. Hilger: A Unified Approach to Continuous and Discrete Dynamics. Colloquia Mathematica Societatis Janos Bolyai, 53. Qualitative theory of differential equations, Szeged, Hungary, 1988.

13. L. Erbe S. Hilger: Sturmian theory on measure chains. Diff. Equations Dynam. Syst. 1,3, pp. 223-244, 1993. | MR

14. S. Hilger: Analysis on measure chains - a unified approach to continuous and discrete calculus. Results Math. 18, pp. 18-56, 1990. | MR

15. A. Halanay, Vl. Răsvan: Stability and Boundary Value Problems for Discrete-time Linear Hamiltonian Systems. Dynamic. Syst. Appl. 8, pp. 439-459, 1993. | MR

16. A. Halanay, D. Wexler: Qualitative theory of pulse systems. (in Romanian) Editura Academiei, Bucharest, 1968 (Russian version by Nauka, Moscow, 1971). | MR

17. F.R. Gantmakher, M.G.Krein: Oscillation matrices and kernels and small oscillations of mechanical systems. (in Russian) 2nd ed. GITTL, Moscow, 1950 (German version by Akademie Verlag, Berlin, 1960).

18. I. Ts. Gohberg, M.G. Krein: Theory and applications of Volterra operators in Hilbert space. (in Russian) Nauka, Moscow, 1967 (English version in AMS Translations Math. Monographs vol. 24, Providence R.I. 1970). | MR