@article{ARM_2000_36_5_a23,
author = {R\u{a}svan, Vladimir},
title = {Stability zones for discrete time {Hamiltonian} systems},
journal = {Archivum mathematicum},
pages = {563--573},
year = {2000},
volume = {36},
number = {5},
mrnumber = {1822826},
zbl = {1090.39503},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a23/}
}
Răsvan, Vladimir. Stability zones for discrete time Hamiltonian systems. Archivum mathematicum, Tome 36 (2000) no. 5, pp. 563-573. http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a23/
References 1. M.G. Krein: Foundations of theory of $\lambda$-zones of stability of a canonical system of linear differential equations with periodic coeffcients. (in Russian). In ”In Memoriam A.A. Andronov”, pp. 413-98, USSR Acad.Publ. House, Moscow, 1955 (English version in AMS Translations 120(2): 1-70, 1983).
2. V.A. Yakubovich, V.M. Staržinskii: Linear differential equations with periodic coeffcients. (in Russian). Nauka Publ. House, Moscow, 1972 (English version by J.Wiley, 1975). | MR
3. M.G. Krein, V.A. Yakubovich: Hamiltonian Systems of Linear Differential Equations with Periodic Coeffcients. (in Russian). In ”Proceedings Int’l Conf. on Nonlin. Oscillations”, vol.1, Ukrainian SSR Acad. Publ. House, Kiev, pp. 277-305, 1963 (English version AMS Translations 120(2): 139-168, 1983). | MR
4. V.A. Yakubovich: Linear quadratic optimization problem and frequency domain theorem for periodic systems I. Siberian Math. Journ., 27, 4, pp. 186-200, 1986 (in Russian). | MR
V.A. Yakubovich: Linear quadratic optimization problem and frequency domain theorem for periodic systems II. Siberian Math. Journ., 31, 6, pp. 176-191, 1990 (in Russian). | MR
5. W. Kratz: Quadratic Functionals in Variational Analysis and Control Theory. Akademie Verlag, Berlin, 1995. | MR | Zbl
6. C.D. Ahlbrandt, A.C. Peterson: Discrete Hamiltonian systems: Difference Equations, Continued Fractions and Riccati Equations. Kluwer, Boston, 1996. | MR | Zbl
7. M. Bohner: Linear Hamiltonian Difference Systems: disconjugacy and Jacobi-type conditions. J. Math.Anal.Appl 199, pp. 804-826, 1996. | MR
8. M. Bohner, O. Došlý: Disconjugacy and transformations for symplectic systems. Rocky Mountain J. Math. 27, pp. 707-743, 1997. | MR
9. O. Došlý: Transformations of linear Hamiltonian difference systems and some of their applications. J. Math.Anal.Appl. 191, pp. 250-265, 1995. | MR
10. A. Halanay, V. Ionescu: Time - varying Discrete Hamiltonian Systems. Computers Math. Appl. 36, 10-12, pp. 307-326, 1998. | MR | Zbl
11. A. Halanay, Vl. Răsvan: Oscillations in Systems with Periodic Coeffcients and Sector-restricted Nonlinearities. in Operator Theory: Advances and Applications vol. 117, pp. 141-154, Birkhauser Verlag, Basel, 2000. | MR
12. B. Aulbach S. Hilger: A Unified Approach to Continuous and Discrete Dynamics. Colloquia Mathematica Societatis Janos Bolyai, 53. Qualitative theory of differential equations, Szeged, Hungary, 1988.
13. L. Erbe S. Hilger: Sturmian theory on measure chains. Diff. Equations Dynam. Syst. 1,3, pp. 223-244, 1993. | MR
14. S. Hilger: Analysis on measure chains - a unified approach to continuous and discrete calculus. Results Math. 18, pp. 18-56, 1990. | MR
15. A. Halanay, Vl. Răsvan: Stability and Boundary Value Problems for Discrete-time Linear Hamiltonian Systems. Dynamic. Syst. Appl. 8, pp. 439-459, 1993. | MR
16. A. Halanay, D. Wexler: Qualitative theory of pulse systems. (in Romanian) Editura Academiei, Bucharest, 1968 (Russian version by Nauka, Moscow, 1971). | MR
17. F.R. Gantmakher, M.G.Krein: Oscillation matrices and kernels and small oscillations of mechanical systems. (in Russian) 2nd ed. GITTL, Moscow, 1950 (German version by Akademie Verlag, Berlin, 1960).
18. I. Ts. Gohberg, M.G. Krein: Theory and applications of Volterra operators in Hilbert space. (in Russian) Nauka, Moscow, 1967 (English version in AMS Translations Math. Monographs vol. 24, Providence R.I. 1970). | MR