Topological structure of solution sets: current results
Archivum mathematicum, Tome 36 (2000) no. 5, pp. 343-382 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34A60, 47H04, 47H10, 54C60, 54H25
@article{ARM_2000_36_5_a2,
     author = {G\'orniewicz, Lech},
     title = {Topological structure of solution sets: current results},
     journal = {Archivum mathematicum},
     pages = {343--382},
     year = {2000},
     volume = {36},
     number = {5},
     mrnumber = {1822805},
     zbl = {1090.54014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a2/}
}
TY  - JOUR
AU  - Górniewicz, Lech
TI  - Topological structure of solution sets: current results
JO  - Archivum mathematicum
PY  - 2000
SP  - 343
EP  - 382
VL  - 36
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a2/
LA  - en
ID  - ARM_2000_36_5_a2
ER  - 
%0 Journal Article
%A Górniewicz, Lech
%T Topological structure of solution sets: current results
%J Archivum mathematicum
%D 2000
%P 343-382
%V 36
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a2/
%G en
%F ARM_2000_36_5_a2
Górniewicz, Lech. Topological structure of solution sets: current results. Archivum mathematicum, Tome 36 (2000) no. 5, pp. 343-382. http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a2/

1. R. P. Agarwal, D. O’Regan: The solutions set of integral inclusions on the half line. Analysis (2000), 1–7. | MR

2. R. R. Akhmerov M. I. Kamenskii A. S. Potapov A. E. Rodkina, B. N. Sadovskii: Measures of Noncompactness and Condensing Operators. (translated from Russian), Birkhauser, Berlin, 1992. | MR

3. J. Andres: On the multivalued Poincaré operators. TMNA 10 (1997), 171–182. | MR | Zbl

4. J. Andres G. Gabor, L. Górniewicz: Boundary value problems on infinite intervals. Trans. Amer. Math. Soc. 351 (1999), 4861–4903. | MR

5. J. Andres G. Gabor, L. Górniewicz: Topological structure of solution sets to multivalued asymptotic problems. Z. Anal. Anwendungen 18, 4 (1999), 1–20.

6. J. Andres G. Gabor, L. Górniewicz: Acyclicity of solutions sets to functional inclusions. Nonlinear Analysis TMA (to appear). | MR

7. J. Andres, L. Górniewicz: On the Banach contraction principle for multivalued mappings. Lecture Notes in Mathematics (to appear). | MR

8. J. Andres L. Górniewicz, M. Lewicka: Partially dissipative periodic processes. Banach Center Publ. 35 (1996), 109–118. | MR

9. G. Anichini, P. Zecca: Multivalued differential equations in a Banach space: an application to control theory. J. Optim. Th. Appl. 21 (1977), 477–486. | MR

10. N. Aronszajn: Le correspondant topologique de l’unicité dans la théorie des équations différentielles. Ann. Math. 43 (1942), 730–738. | MR | Zbl

11. Z. Artstein: Continuous dependence on parameters of solutions of operator equations. Trans. Amer. Math. Soc. 231 (1977), 143–166. | MR

12. A. Augustynowicz Z. Dzedzej, B. D. Gelman: The solution set to BVP for some functional differential inclusions. Set-Valued Analysis 6 (1998), 257–263. | MR

13. R. Bader, W. Kryszewski: On the solution sets of constrained differential inclusions with applications. Set Valued Anal. (to appear). | MR | Zbl

14. M. E. Ballotti: Aronszajn’s theorem for a parabolic partial differential equation. Non-linear Anal. TMA 9, No. 11 (1985), 1183–1187. | MR | Zbl

15. J. Bebernes, M. Martelli: On the structure of the solution set for periodic boundary value problems. Nonlinear Anal. TMA 4, No. 4 (1980), 821–830. | MR | Zbl

16. J. Bebernes, K. Schmitt: Invariant sets and the Hukuhara–Kneser property for systems of parabolic partial differential equations. Rocky Mount. J. Math. 7, No. 3 (1967), 557–567. | MR

17. R. Bielawski L. Górniewicz, S. Plaskacz: Topological approach to differential inclusions on closed sets of $R^n$. Dynamics Reported 1 (1992), 225–250.

18. D. Bielawski T. Pruszko: On the structure of the set of solutions of a functional equation with application to boundary value problems. Ann. Polon. Math. 53, No. 3 (1991), 201–209. | MR

19. A. W. Bogatyrev: Fixed points and properties of solutions of differential inclusions. Math. Sbornik 47 (1983), 895–909 (in Russian). | MR

20. A. Bressan A. Cellina, A. Fryszkowski: A class of absolute retracts in spaces of integrable functions. Proc. Amer. Math. Soc. 112 (1991), 413–418. | MR

21. F. E. Browder, C. P. Gupta: Topological degree and nonlinear mappings of analytic type in Banach spaces. J. Math. Anal. Appl. 26 (1969), 730–738. | MR | Zbl

22. J. Bryszewski L. Górniewicz, T. Pruszko: An application of the topological degree theory to the study of the Darboux problem for hyperbolic equations. J. Math. Anal. Appl. 76 (1980), 107–115. | MR

23. A. I. Bulgakov, L. N. Lyapin: Some properties of the set of solutions of a Volterra–Hammerstein integral inclusion. Diff. Uravni. 14, No. 8 (1978), 1043–1048. | MR | Zbl

24. A. I. Bulgakov, L. N. Lyapin: Certain properties of the set of solutions of the Volterra–Hammerstein integral inclusion. Differents. Uravn. 14, No. 8 (1978), 1465–1472. | MR

25. A. I. Bulgakov, L. N. Lyapin: On the connectedness of sets of solutions of functional inclusions. Mat. Sbornik 119, No. 2 (1982), 295–300. | MR

26. A. Cellina: On the existence of solutions of ordinary differential equations in a Banach space. Funkc. Ekvac. 14 (1971), 129–136. | MR

27. A. Cellina: On the local existence of solutions of ordinary differential equations. Bull. Acad. Polon. Sci. 20 (1972), 293–296. | MR | Zbl

28. A. Cellina: On the nonexistence of solutions of differential equations in nonreflexive spaces. Bull. Amer. Math. Soc. 78 (1972), 1069–1072. | MR

29. J. Chandra V. Lakshmikantham, A. R. Mitchell: Existence of solutions of boundary value problems for nonlinear second order systems in a Banach space. Nonlinear Anal. TMA 2 (1978), 157–168. | MR

30. S. N. Chow, J. D. Schur: An existence theorem for ordinary differential equations in Banach spaces. Bull. Amer. Math. Soc. 77 (1971), 1018–1020. | MR

31. S. N. Chow, J. D. Schur: Fundamental theory of contingent differential equations in Banach spaces. Trans. Amer. Math. Soc. 179 (1973), 133–144. | MR

32. M. Cichoń, I. Kubiaczyk: Some remarks on the structure of the solutions set for differential inclusions in Banach spaces. J. Math. Anal. Appl. 233 (1999), 597–606. | MR

33. A. Constantin: Stability of solution sets of differential equations with multivalued right hand side. J. Diff. Equs. 114 (1994), 243–252. | MR | Zbl

34. G. Conti W. Kryszewski, P. Zecca: On the solvability of systems of noncompact inclusions. Ann. Mat. Pura Appl. (4), 160 (1991), 371–408. | MR

35. G. Conti V. V. Obukhovskii, P. Zecca: On the topological structure of the solution set for a semilinear functional-differential inclusion in a Banach space. (Preprint). | MR

36. J.-F. Couchouron, M. Kamenskii: Perturbations d’inclusions paraboliques par des opérateurs condensants. C. R. Acad. Sci. Paris 320 (1995), Serie I. 1–6. | MR

37. H. Covitz S. B. Nadler, Jr.: Multi-valued contraction mappings in generalized metric spaces. Israel J. Math. 8 (1970), 5–11. | MR

38. K. Czarnowski: Structure of the set of solutions of an initial-boundary value problem for a parabolic partial differential equations in an unbounded domain. Nonlinear Anal. TMA 27, no. 6 (1996), 723–729. | MR

39. K. Czarnowski: On the structure of fixed point sets of ’k-set contractions’ in $B_0$ spaces. Demonstratio Math. 30 (1997), 233–244. | MR

40. K. Czarnowski, T. Pruszko: On the structure of fixed point sets of compact maps in $B_0$ spaces with applications to integral and differential equations in unbounded domain. J. Math. Anal. Appl. 154 (1991), 151–163. | MR

41. J. L. Davy: Properties of the solution set of a generalized differential equations. Bull. Austr. Math. Soc. 6 (1972), 379–389. | MR

42. F. S. De Blasi: Existence and stability of solutions for autonomous multivalued differential equations in a Banach space. Rend. Accad. Naz. Lincei, Serie VII, 60 (1976), 767–774. | MR

43. F. S. De Blasi: On a property of the unit sphere in a Banach space. Bull. Soc. Math. R. S. Roumaine 21 (1977), 259–262. | MR | Zbl

44. F. S. De Blasi: Characterizations of certain classes of semicontinuous multifunctions by continuous approximations. J. Math. Anal. Appl. 106, No. 1 (1985), 1–8. | MR | Zbl

45. F. S. De Blasi L. Górniewicz, G. Pianigiani: Topological degree and periodic solutions of differential inclusions. Nonlinear Anal. TMA 37 (1999), 217–245. | MR

46. F. S. De Blasi, J. Myjak: On the solutions sets for differential inclusions. Bull. Polon. Acad. Sci. 33 (1985), 17–23. | MR | Zbl

47. F. S. De Blasi, J. Myjak, O: n the structure of the set of solutions of the Darboux problem for hyperbolic equations. Proc. Edinburgh Math. Soc., Ser. 2 29, No. 1 (1986), 7–14. | MR

48. F. S. De Blasi, G. Pianigiani: On the solution sets of nonconvex differential inclusions. J. Diff. Equs. 128 (1996), 541–555. | MR | Zbl

49. F. S. De Blasi, G. Pianigiani: Solution sets of boundary value problems for nonconvex differential inclusions. Nonlinear Anal. TMA 1 (1993), 303–313. | MR | Zbl

50. F. S. De Blasi G. Pianigiani, V. Staicu: Topological properties of nonconvex differential inclusions of evolution type. Nonlinear Anal. TMA 24 (1995), 711–720. | MR

51. K. Deimling: Periodic solutions of differential equations in Banach spaces. Man. Math. 24 (1978), 31–44. | MR | Zbl

52. K. Deimling: Open problems for ordinary differential equations in a Banach space. (in the book: Equationi Differenziali), Florence, 1978.

53. K. Deimling, M. R. Mohana Rao: On solutions sets of multivalued differential equations. Applicable Analysis 30 (1988), 129–135.

54. R. Dragoni J. W. Macki P. Nistri, P. Zecca: Solution Sets of Differential Equations in Abstract Spaces. Pitman Research Notes in Mathematics Series, 342, Longman, Harlow, 1996. | MR

55. J. Dubois, P. Morales: On the Hukuhara–Kneser property for some Cauchy problems in locally convex topological vector spaces. Lecture Notes in Math. vol. 964, pp. 162–170, Springer, Berlin, 1982. | MR | Zbl

56. J. Dubois, P. Morales: Structure de l’ensemble des solutions du probléme dee Cauchy sous le conditions de Carathéodory. Ann. Sci. Math. Quebec 7 (1983), 5–27. | MR

57. G. Dylawerski, L. Górniewicz: A remark on the Krasnosielskii translation operator. Serdica Math. J. 9 (1983), 102–107. | MR

58. Z. Dzedzej, B. Gelman: Dimension of the solution set for differential inclusions. Demonstration Math. 26 (1993), 149–158. | MR | Zbl

59. V. V. Filippov: The topological structure of spaces of solutions of ordinary differential equations. Uspekhi Mat. Nauk 48 (1993), 103–154. (in Russian) | MR

60. G. Gabor: On the acyclicity of fixed point sets of multivalued maps. TMNA 14 (1999), 327–343. | MR

61. B. D. Gelman: On the structure of the set of solutions for inclusions with multivalued operators. in Global Analysis - Studies and Applications III, (ed. Yu. G. Borisovich and Yu. E. Glikhlikh), Lecture Notes in Math. vol. 1334, pp. 60–78, Springer, Berlin, 1988. | MR

62. B. D. Gelman: Topological properties of fixed point sets of multivalued maps. Mat. Sb. 188, No. 12 (1997), 33–56. | MR

63. A. N. Godunov: A counter example to Peano’s Theorem in an infinite dimensional Hilbert space. Vestnik Mosk. Gos. Univ., Ser. Mat. Mek. 5 (1972), 31–34.

64. A. N. Godunov: Peano’s Theorem in an infinite dimensional Hilbert space is false even in a weakened form. Math. Notes 15 (1974), 273–279. | MR

65. K. Goebel, W. Rzymowski: An existence theorem for the equation x = f (t, x) in Banach spaces. Bull. Acad. Polon. Math. 18 (1970), 367–370. | MR

66. L. Górniewicz: Topological approach to differential inclusions. in: A. Granas and H. Frigon eds., NATO ASI Series C 472, Kluwer, 1975.

67. L. Górniewicz: Homological methods in fixed point theory of multivalued mappings. Dissertationes Math. 129 (1976), 1–71.

68. L. Górniewicz: On the solution sets of differential inclusions. J. Math. Anal. Appl. 113 (1986), 235–244. | MR

69. L. Górniewicz: Topological Fixed Point Theory of Multivalued Mappings. Kluwer, Dordrecht, 1999. | MR

70. L. Górniewicz, S. A. Marano: On the fixed point set of multivalued contractions. Rend. Circ. Mat. Palermo 40 (1996), 139–145. | MR

71. L. Górniewicz S. A. Marano, M. Slosarski: Fixed points of contractive multivalued maps. Proc. Amer. Math. Soc. 124 (1996), 2675–2683. | MR

72. L. Górniewicz P. Nistri, V. V. Obukovskii: Differential inclusions on proximate retracts of Hilbert spaces. Int. J. Nonlinear Diff. Equs. TMA 3 (1980), 13–26.

73. L. Górniewicz, T. Pruszko: On the set of solutions of the Darboux problem for some hyperbolic equations. Bull. Acad. Polon. Math. 28, No. 5-6 (1980), 279–286. | MR

74. L. Górniewicz, M. Slosarski: Topological and differential inclusions. Bull. Austr. Math. Soc. 45 (1992), 177–193. | MR

75. G. Haddad: Topological properties of the sets of solutions for functional differential inclusions. Nonlinear Anal. TMA 5, No. 12 (1981), 1349-1366. | MR | Zbl

76. A. J. Heunis: Continuous dependence of the solutions of an ordinary differential equation. J. Diff. Eqns. 54 (1984), 121–138. | MR | Zbl

77. C. J. Himmelberg, F. S. Van Vleck: On the topological triviality of solution sets. Rocky Mountain J. Math. 10 (1980), 247–252. | MR | Zbl

78. C. J. Himmelberg, F. S. Van Vleck: A note on the solution sets of differential inclusions. Rocky Mountain J. Math. 12 (1982), 621–625. | MR | Zbl

79. T. S. Hu, N. S. Papageorgiou: On the topological regularity of the solution set of differential inclusions with constrains. J. Diff. Equat. 107 (1994), 280–289. | MR

80. M. Hukuhara: Sur les systémes des équations differentielles ordinaires. Japan J. Math. 5 (1928), 345–350.

81. D. M. Hyman: On decreasing sequence of compact absolute retracts. Fund. Math. 64 (1959), 91–97. | MR

82. J. Jarník, J. Kurzweil: On conditions on right hand sides of differential relations. Časopis pro Pěst. Mat. 102 (1977), 334–349. | MR

83. M. I. Kamenskii: On the Peano Theorem in infinite dimensional spaces. Mat. Zametki 11, No. 5 (1972), 569–576. | MR

84. M. I. Kamenskii, V. V. Obukovskii: Condensing multioperators and periodic solutions of parabolic functional - differential inclusions in Banach spaces. Nonlinear Anal. TMA 20 (1991), 781–792. | MR

85. R. Kannan J. J. Nieto, M. B. Ray: A class of nonlinear boundary value problems without Landesman–Lazer condition. J. Math. Anal. Appl. 105 (1985), 1–11. | MR

86. A. Kari: On Peano’s Theorem in locally convex spaces. Studia Math. 73, No. 3 (1982), 213–223. | MR | Zbl

87. W. G. Kelley: A Kneser theorem for Volterra integral equations. Proc. Amer. Math. Soc. 40, No. 1 (1973), 183–190. | MR | Zbl

88. M. Kisielewicz: Multivalued differential equations in separable Banach spaces. J. Optim. Th. Appl. 37, No. 2 (1982), 231–249. | MR | Zbl

89. H. Kneser: Über die Lösungen eine system gewöhnlicher differential Gleichungen das der lipschitzchen Bedingung nicht genügt. S. B. Preuss. Akad. Wiss. Phys. Math. Kl. 4 (1923), 171–174.

90. A. Kolmogorov, S. Fomin: Elements of the Theory of Functions and Functional Analysis. Graylock, New York, 1957. | MR

91. M. A. Krasnoselskii P. P. Zabreiko: Geometrical Methods of Nonlinear Analysis. Springer-Verlag, Heidelberg 1984. | MR

92. W. Kryszewski: Topological and approximation methods in the degree theory of set-valued maps. Dissertationes Math. 336 (1994), 1–102. | MR

93. P. Krbec, J. Kurzweil: Kneser’s theorem for multivalued, differential delay equations. Časopis pro Pěst. Mat. 104, No. 1 (1979), 1–8. | MR | Zbl

94. Z. Kubíček: A generalization of N. Aronszajn’s theorem on connectedness of the fixed point set of a compact mapping. Czech. Math. J. 37, No. 112 (1987), 415–423. | MR

95. Z. Kubíček: On the structure of the fixed point sets of some compact maps in the Fréchet space. Math. Bohemica 118 (1993), 343–358.

96. Z. Kubíček: On the structure of the solution set of a functional differential system on an unbounded interval. Arch. Math. (Brno) 35 (1999), 215–228. | MR

97. I. Kubiaczyk: Structure of the sets of weak solutions of an ordinary differential equation in a Banach space. Ann. Polon. Math. 44, No. 1 (1980), 67–72. | MR

98. I. Kubiaczyk: Kneser’s Theorem for differential equations in Banach spaces. J. Diff. Equs. 45, No. 2 (1982), 139–147. | MR

99. I. Kubiaczyk, S. Szufla: Kneser’s Theorem for weak solutions of ordinary differential equations in Banach spaces. Publ. Inst. Math. (Beograd) (NS) 32, No. 46 (1982), 99–103. | MR

100. A. Lasota, J. A. Yorke: The generic property of existence of solutions of differential equations in Banach spaces. J. Diff. Equs. 13 (1973), 1–12. | MR

101. J. M. Lasry, R. Robert: Analyse Non Linéaire Multivoque. Cahiers de Math. de la Decision, Paris, No. 7611, 1977.

102. J. M. Lasry, R. Robert: Acyclicité de l’ensemble des solutions de certaines équations fonctionnelles, C. R. Acad. Sci. Paris 282, No. 22A (1976), 1283–1286. | MR

103. T. C. Lim: On fixed point stability for set valued contractive mappings with applications to generalized differential equations. J. Math. Anal. Appl. 110 (1985), 436–441. | MR

104. T. Ma: Topological degrees of set-valued compact fields in locally convex spaces. Dissertationes Math. XCII (1972), 1–47. | MR

105. S. Marano, V. Staicu: On the set of solutions to a class of nonconvex nonclosed differential inclusions. Acta Math. Hungarica 76 (1997), 287–301. | MR | Zbl

106. A. Margheri, P. Zecca: A note on the topological structure of solution sets of Sturm–Liouville problems in Banach spaces. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Math. Nat., (to appear).

107. H. Monch: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal. TMA 4 (1980), 985–999. | MR

108. H. Monch, G. von Harten: On the Cauchy problem for ordinary differential equations in Banach spaces. Arch. Math. 39 (1982), 153–160. | MR

109. A. M. Muhsinov: On differential inclusions in a Banach space. Soviet Math. Dokl. 15 (1974), 1122–1125.

110. J. J. Nieto: Periodic solutions of nonlinear parabolic equations. J. Diff. Equs. 60, No. 1 (1985), 90–102. | MR | Zbl

111. J. J. Nieto: Nonuniqueness of solutions of semilinear elliptic equations at resonance. Boll. Un. Mat. Ital. 6, 5-A, No. 2, (1986), 205–210. | MR

112. J. J. Nieto: Structure of the solution set for semilinear elliptic equations. Colloq. Math. Soc. Janos Bolyai, 47 (1987), 799–807. | MR | Zbl

113. J. J. Nieto: Hukuhara–Kneser property for a nonlinear Dirichlet problem. J. Math. Anal. Appl. 128 (1987), 57–63. | MR | Zbl

114. J. J. Nieto: Decreasing sequences of compact absolute retracts and nonlinear problems. Boll. Un. Mat. Ital. 2-B, No. 7 (1988), 497–507. | MR | Zbl

115. J. J. Nieto: Aronszajn’s theorem for some nonlinear Dirichlet problem. Proc. Edinburg Math. Soc. 31 (1988), 345–351. | MR

116. J. J. Nieto: Nonlinear second order periodic value problems with Carathéodory functions. Appl. Anal. 34 (1989), 111–128.

117. J. J. Nieto: Periodic Neumann boundary value problem for nonlinear parabolic equations and application to an elliptic equation. Ann. Polon. Math. 54, No. 2 (1991), 111–116. | MR | Zbl

118. J. J. Nieto, L. Sanchez: Periodic boundary value problems for some Duffing equations. Diff. and Int. Equs. 1, No. 4 (1988), 399–408. | MR

119. V. V. Obukhovskii: Semilinear functional differential inclusions in a Banach space and controlled parabolic systems. Soviet J. Automat. Inform. Sci. 24, No. 3 (1991), 71–79. | MR

120. C. Olech: On the existence and uniqueness of solutions of an ordinary differential equation in the case of a Banach space. Bull. Acad. Polon. Math. 8 (1969), 667–673. | MR

121. N. S. Papageorgiou: Kneser’s Theorem for differential equations in Banach spaces. Bull. Austral. Math. Soc. 33, No. 3 (1986), 419–434. | MR

122. N. S. Papageorgiou: On the solution set of differential inclusions in a Banach space. Appl. Anal. 25, No. 4 (1987), 319–329. | MR

123. N. S. Papageorgiou: A property of the solution set of differential inclusions in Banach spaces with a Carathéodory orientor field. Appl. Anal. 27, No. 4 (1988), 279–287. | MR

124. N. S. Papageorgiou: On the solution set of differential inclusions with state constraints. Appl. Anal. 31 (1989), 279–289. | MR | Zbl

125. N. S. Papageorgiou: Convexity of the orientor field and the solution set of a class of evolution inclusions. Math. Slovaca 43 (1993), no. 5, 593–615. | MR

126. N. S. Papageorgiou: On the properties of the solution set of nonconvex evolution inclusions of the subdifferential type. Comment. Math. Univ. Carolin. 34 (1993), no. 4, 673–687. | MR | Zbl

127. N. S. Papageorgiou: A property of the solution set of nonlinear evolution inclusions with state constraints. Math. Japon. 38 (1993), no. 3, 559–569. | MR | Zbl

128. N. S. Papageorgiou: On the solution set of nonlinear evolution inclusions depending on a parameter. Publ. Math. Debrecen 44 (1994), no. 1–2, 31–49. | MR | Zbl

129. N. S. Papageorgiou: On the solution set of nonconvex subdifferential evolution inclusions. Czechoslovak Math. J. 44 (1994), no. 3, 481–500. | MR | Zbl

130. N. S. Papageorgiou: On the topological regularity of the solution set of differential inclusions with constraints. J. Diff. Equs. 107 (1994), no. 2, 280–289. | MR | Zbl

131. N. S. Papageorgiou: On the topological properties of the solution set of evolution inclusions involving time-dependent subdifferential operators. Boll. Un. Mat. Ital. 9 (1995), no. 2, 359–374. | MR | Zbl

132. N. S. Papageorgiou: On the properties of the solution set of semilinear evolution inclusions. Nonlinear Anal. TMA 24 (1995), no. 12, 1683–1712. | MR | Zbl

133. N. S. Papageorgiou: Topological properties of the solution set of integrodifferential inclusions. Comment. Math. Univ. Carolin. 36 (1995), no. 3, 429–442. | MR | Zbl

134. N. S. Papageorgiou: On the solution set of nonlinear integrodifferential inclusions in $R^N$. Math. Japon. 46 (1997), no. 1, 117–127. | MR

135. N. S. Papageorgiou: Topological properties of the solution set of a class of nonlinear evolutions inclusions. Czechoslovak Math. J. 47 (1997), no. 3, 409–424. | MR

136. N. S. Papageorgiou: On the structure of the solution set of evolution inclusions with time-dependent subdifferentials. Rend. Sem. Mat. Univ. Padova 97 (1997), 163–186. | MR | Zbl

137. N. S. Papageorgiou, F. Papalini: On the structure of the solution set of evolution inclusions with time-dependent subdifferentials. Acta Math. Univ. Comenian. (N.S.) 65 (1996), no. 1, 33–51. | MR | Zbl

138. N. S. Papageorgiou N. Shahzad: Properties of the solution set of nonlinear evolution inclusions. Appl. Math. Optim. 36 (1997), no. 1, 1–20. | MR

139. G. Peano: Sull’integrabilité delle equazioni differenziali del primo ordine. Atti della Reale Accad. dell Scienze di Torino 21 (1886), 677–685.

140. G. Peano: Démonstration de l’integrabilite des équations differentielles ordinaires. Mat. Annalen 37 (1890), 182–238.

141. W. V. Petryshyn: Note on the structure of fixed point sets of 1-set–contractions. Proc. Amer. Math. Soc. 31 (1972), 189–194. | MR

142. G. Pianigiani: Existence of solutions of ordinary differential equations in Banach spaces. Bull. Acad. Polon. Math. 23 (1975), 853–857. | MR

143. S. Plaskacz: On the solution sets for differential inclusions. Boll. Un. Mat. Ital. 7, 6-A (1992), 387–394. | MR | Zbl

144. J. Saint Raymond: Multivalued contractions. Set-Valued Analysis 2, 4 (1994), 559–571. | MR | Zbl

145. B. Ricceri: Une propriété topologique de l’ensemble des points fixes d’une contraction multivoque à valeurs convexes. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 81 (1987), 283–286. | MR

146. B. N. Sadovskii: On measures of noncompactness and contracting operators. in Problems in the Mathematical Analysis of Complex Systems, second edition, Voronezh (1968), 89–119. (in Russian) | MR

147. B. N. Sadovskii: Limit-compact and condensing operators. Uspekh. Mat. Nauk 27 (1972), 1–146. (in Russian) | MR

148. K. Schmitt, P. Volkmann: Boundary value problems for second order differential equations in convex subsets in a Banach space. Trans. Amer. Math. Soc. 218 (1976), 397–405. | MR

149. V. Šeda: Fredholm mappings and the generalized boundary value problem. Diff. Integral Equs. 8 (1995), 19–40. | MR

150. V. Šeda: Generalized boundary value problems and Fredholm mappings. Nonlinear Anal. TMA 30 (1997), 1607-1616. | MR

151. V. Šeda: Rδ -set of solutions to a boundary value problem. TMNA, (to appear).

152. J. S. Shin: Kneser type theorems for functional differential equations in a Banach space. Funk. Ekvacioj 35 (1992), 451–466. | MR | Zbl

153. Z. Song: Existence of generalized solutions for ordinary differential equations in Banach spaces. 3. Math. Anal. Appl. 128 (1987), 405–412. | MR | Zbl

154. W. Sosulski: Compactness and upper semi continuity of solution set of functional differential equations of hyperbolic type. Comment. Mat. Prace. Mat. 25, No. 2 (1985), 359–362. | MR

155. V. Staicu: Qualitative propeties of solutions sets to Lipschitzian differential inclusions. World Sci. Publ. (Singapore 1993), 910–914. | MR

156. S. Szufla: Some remarks on ordinary differential equations in Banach spaces. Bull. Acad. Polon. Math. 16 (1968), 795–800. | MR

157. S. Szufla: Measure of noncompactness and ordinary differential equations in Banach spaces. Bull Acad. Polon. Sci. 19 (1971), 831–835. | MR

158. S. Szufla: Structure of the solutions set of ordinary differential equations in a Banach space. Bull. Acad. Polon. Sci. 21, No. 2 (1973), 141–144. | MR

159. S. Szufla: Solutions sets of nonlinear equations. Bull. Acad. Polon. Sci. 21, No. 21 (1973), 971–976. | MR

160. S. Szufla: Some properties of the solutions set of ordinary differential equations. Bull. Acad. Polon. Sci. 22, No. 7 (1974), 675–678. | MR

161. S. Szufla: On the structure of solutions sets of differential and integral equations in Banach spaces. Ann. Polon. Math. 34 (1977), 165–177. | MR

162. S. Szufla: On the equation x = f (t, x) in Banach spaces. Bull. Acad. Polon. Sci. 26, No. 5 (1978), 401–406. | MR

163. S. Szufla: Kneser’s theorem for weak solutions of ordinary differential equations in reflexive Banach spaces. Bull. Acad. Polon. Sci. 26, No. 5 (1978), 407–413. | MR

164. S. Szufla: Sets of fixed points nonlinear mappings in function spaces. Funkcial. Ekvac. 22 (1979), 121–126. | MR

165. S. Szufla: On the existence of solutions of differential equations in Banach spaces. Bull. Acad. Polon. Sci. 30, No. 11–12 (1982), 507–515. | MR

166. S. Szufla: On the equation x = f (t, x) in locally convex spaces. Math. Nachr. 118 (1984), 179–185. | MR

167. S. Szufla: Existence theorems for solutions of integral equations in Banach spaces. Proc. Conf. Diff. Equs. and Optimal Control, Zielona Góra (1985), 101–107. | MR

168. S. Szufla: On the application of measure of noncompactness to differential and integral equations in a Banach space. Fasc. Math. 18 (1988), 5–11. | MR

169. P. Talaga: The Hukuhara–Kneser property for parabolic systems with nonlinear boundary conditions. J. Math. Anal. 79 (1981), 461–488. | MR | Zbl

170. P. Talaga: The Hukuhara–Kneser property for quasilinear parabolic equations. Non-linear Anal. TMA 12, No. 3 (1988), 231–245. | MR | Zbl

171. A. A. Tolstonogov: On differential inclusions in a Banach space and continuous selectors. Dokl. Akad. Nauk SSSR 244 (1979), 1088–1092. | MR

172. A. A. Tolstonogov: On properties of solutions of differential inclusions in a Banach space. Dokl. Akad. Nauk SSSR 248 (1979), 42–46. | MR | Zbl

173. A. A. Tolstonogov: On the structure of the solution set for differential inclusions in a Banach space. Math. Sbornik, 46 (1983), 1–15. (in Russian) | Zbl

174. G. Vidossich: On Peano-phenomenon. Bull. Un. Math. Ital. 3 (1970), 33–42. | MR | Zbl

175. G. Vidossich: On the structure of the set of solutions of nonlinear equations. J. Math. Anal. Appl. 34 (1971), 602–617. | MR

176. G. Vidossich: A fixed point theorem for function spaces. J. Math. Anal. Appl. 36 (1971), 581–587. | MR

177. G. Vidossich: Existence, uniqueness and approximation of fixed points as a generic property. Bol. Soc. Brasil. Mat. 5 (1974), 17–29. | MR

178. G. Vidossich: Two remarks on global solutions of ordinary differential equations in the real line. Proc. Amer. Math. Soc. 55 (1976), 111–115. | MR | Zbl

179. T. Wazewski: Sur l’existence et l’unicité des integrales des équations différentielles ordinaires au cas de l’espace de Banach. Bull. Acad. Polon. Math. 8 (1960), 301–305. | MR | Zbl

180. J. A. Yorke: Spaces of solutions. Lect. Notes Op. Res. Math. Econ. vol. 12, Springer-Verlag, (1969), 383–403. | MR | Zbl

181. J. A. Yorke: A continuous differential equation in a Hilbert space without existence. Funkc. Ekvac. 13 (1970), 19–21. | MR

182. R. R. Akhmerov: The structure of the solution set of a boundary value problem for a one-dimensional stationary equation of variable type. Chisl. Metody Mekh. Sploshn. Sredy, 15 (1984), 20–30. | MR

183. J. C. Alexander I. Massabò, J. Pejsachowicz: On the connectivity properties of the solution set of infinitely-parametrized families of vector fields. Boll. Un. Mat. Ital.A (6), 1 (1982), 309–312. | MR

184. A. Anguraj, K. Balachandran: On the solution sets of differential inclusion in Banach spaces. Tamkang J. Math., 23 (1992), 59–65. | MR | Zbl

185. G. Anichini, G. Conti: How to make use of the solution set to solve boundary value problems. Recent Trends in Nonlinear Analysis, Birkhäuser, Basel, 2000, 15–25. | MR | Zbl

186. G. Anichini G. Conti, P. Zecca: Using solution sets for solving boundary value problems for ordinary differential equations. Nonlinear Anal., 17 (1991), 465–472. | MR

187. M. T. Ashordiya: The structure of the solution set of the Cauchy problem for a system of generalized ordinary differential equations. Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy, 17 (1986), 5–16. | MR

188. E. P. Avgerinos, N. S. Papageorgiou: On the solution set of maximal monotone differential inclusions in $\mathbb R^m$. Math. Japon., 38 (1993), 91–110. | MR

189. E. P. Avgerinos, N. S. Papageorgiou: Topological properties of the solution set of integrodifferential inclusions. Comment. Math. Univ. Carolin., 36 (1995), 429–442. | MR | Zbl

190. G. Bartuzel, A. Fryszkowski: A topological property of the solution set to the Sturm–Liouville differential inclusions. Demonstratio Math., 28 (1995), 903–914. | MR | Zbl

191. J. W. Bebernes: Solution set properties for some nonlinear parabolic differential equations. Equadiff IV (Proc. Czechoslovak Conf. Differential Equations and their Applications, Prague, 1977) Springer, Berlin, 1979, 25–30. | MR

192. V. I. Blagodatskikh, P. Ndiĭ : Convexity of the solution set of a differential inclusion. Vestnik Moskov. Univ. Ser. XV Vychisl. Mat. Kibernet., (1998), 21–22. | MR

193. F. S. De Blasi G. Pianigiani, V. Staicu: On the solution sets of some nonconvex hyperbolic differential inclusions. Czechoslovak Math. J., 45 (1995), 107–116. | MR

194. D. Bugajewska: On implicit Darboux problem in Banach spaces. Bull. Austral. Math. Soc., 56 (1997), 149–156. | MR

195. D. Bugajewska: On the equation of nth order and the Denjoy integral. Nonlinear Anal., 34 (1998), 1111–1115. | MR

196. D. Bugajewska: A note on the global solutions of the Cauchy problem in Banach spaces. Acta Math. Hung., 88 (2000), 341–346. | MR

197. D. Bugajewska: On the structure of solution sets of differential equations in Banach spaces. Math. Slovaca, 50 (2000), 463–471. | MR

198. D. Bugajewska, D. Bugajewski : On the equation $x_{ap}^{(n)} = f (t, x)$. Czech. Math. Journal, 46 (1996), 325–330. | MR

199. D. Bugajewska, D. Bugajewski: On nonlinear equations in Banach spaces and axiomatic measures of noncompactness. Funct. Differ. Equ., 5 (1998), 57–68. | MR | Zbl

200. D. Bugajewski: On the structure of the $L^{p1 ,p2}$ -solution sets of Volterra integral equations in Banach spaces. Comment. Math. Prace Mat., 30 (1991), 253–260. | MR | Zbl

201. D. Bugajewski: On differential and integral equations in locally convex spaces. Demonstr. Math., 28 (1995), 961–966. | MR | Zbl

202. D. Bugajewski: On the structure of solution sets of differential and integral equations, and the Perron integral. Proceedings of the Prague Mathematical Conference 1996, Icaris, Prague, 1997, 47–51. | MR | Zbl

203. D. Bugajewski, S. Szufla: Kneser’s theorem for weak solutions of the Darboux problem in Banach spaces. Nonlinear Anal., 20 (1993), 169–173. | MR

204. D. Bugajewski, S. Szufla: On the Aronszajn property for differential equations and the Denjoy integral. Comment. Math., 35 (1995), 61–69. | MR

205. T. Cardinali: On the structure of the solution set of evolution inclusions with Fréchet subdifferentials. J. Appl. Math. Stochastic Anal., 13 (2000), 51–72. | MR | Zbl

206. T. Cardinali A. Fiacca, N. S. Papageorgiou: On the solution set of nonlinear integrodifferential inclusions in $\bold R^N$ . Math. Japon., 46 (1997), 117–127. | MR

207. C. Castaing, M. Marques: Topological properties of solution sets for sweeping processes with delay. Portugal. Math., 54 (1997), 485–507. | MR | Zbl

208. A. Cellina, A. Ornelas: Convexity and the closure of the solution set to differential inclusions. Boll. Un. Mat. Ital. B (7), 4 (1990), 255–263. | MR | Zbl

209. R. M. Colombo A. Fryszkowski T. Rzezuchowski, V. Staicu: Continuous selections of solution sets of Lipschitzean differential inclusions. Funkcial. Ekvac., 34 (1991), 321–330. | MR

210. A. Constantin: On the stability of solution sets for operational differential inclusions. An. Univ. Timişoara Ser. Ştiinţ. Mat., 29 (1991), 115–124. | MR | Zbl

211. G. Conti V. Obukhovskiĭ, P. Zecca: On the topological structure of the solution set for a semilinear functional-differential inclusion in a Banach space. Topology in Nonlinear Analysis, Polish Acad. Sci., Warsaw, 1996, 159–169. | MR

212. K. Deimling: On solution sets of multivalued differential equations. Appl. Anal., 30 (1988), 129–135. | MR | Zbl

213. K. Deimling: Bounds for solution sets of multivalued ODEs. Recent Trends in Differential Equations, World Sci. Publishing, River Edge, NJ, 1992, 127–134. | MR | Zbl

214. P. Diamond, P. Watson: Regularity of solution sets for differential inclusions quasi-concave in a parameter. Appl. Math. Lett., 13 (2000), 31–35. | MR | Zbl

215. Y. H. Du: The structure of the solution set of a class of nonlinear eigenvalue problems. J. Math. Anal. Appl., 170 (1992), 567–580. | MR | Zbl

216. V. V. Filippov: On the acyclicity of solution sets of ordinary differential equations. Dokl. Akad. Nauk, 352 (1997), 28–31. | MR

217. A. Gavioli: On the solution set of the nonconvex sweeping process. Discuss. Math. Differential Incl., 19 (1999), 45–65. | MR | Zbl

218. V. V. Goncharov: Co-density and other properties of the solution set of differential inclusions with noncompact right-hand side. Discuss. Math. Differential Incl., 16 (1996), 103–120. | MR | Zbl

219. T. G. Hallam, J. W. Heidel: Structure of the solution set of some first order differential equations of comparison type. Trans. Amer. Math. Soc., 160 (1971), 501–512. | MR

220. G. Herzog, R. Lemmert: On the structure of the solution set of $u′′ = f (t, u)$, $u(0) = u(1) = 0$. Math. Nachr., 215 (2000), 103–105. | MR | Zbl

221. S. C. Hu V. Lakshmikantham, N. S. Papageorgiou: On the solution set of nonlinear evolution inclusions. Dynamic Systems Appl., 1 (1992), 71–82. | MR | Zbl

222. S. C. Hu V. Lakshmikantham, N. S. Papageorgiou: On the properties of the solution set of semilinear evolution inclusions. Nonlinear Anal., 24 (1995), 1683–1712. | MR | Zbl

223. A. G. Ibrahim, A. M. Gomaa: Topological properties of the solution sets of some differential inclusions. Pure Math. Appl., 10 (1999), 197–223. | MR | Zbl

224. G. Isac, G. X.-Z. Yuan: Essential components and connectedness of solution set for complementarity problems. Fixed Point Theory and Applications (Chinju, 1998), Nova Sci. Publ., Huntington, NY, 2000, 35–46. | MR

225. N. A. Izobov: The measure of the solution set of a linear system with the largest lower exponent. Differentsial’nye Uravneniya, 24 (1988), 2168–2170, 2207. | MR

226. M. Kamenskiĭ V. Obukhovskiĭ, P. Zecca: Method of the solution sets for a quasilinear functional-differential inclusion in a Banach space. Differential Equations Dynam. Systems, 4 (1996), 339–350. | MR

227. R. Kannan, D. O’Regan: A note on the solution set of integral inclusions. J. Integral Equations Appl., 12 (2000), 85–94. | MR

228. Z. Kánnai, P. Tallos: Stability of solution sets of differential inclusions. Acta Sci. Math. (Szeged), 61 (1995), 197–207. | MR

229. M. Kisielewicz: Continuous dependence of solution sets for generalized differential equations of neutral type. Atti Accad. Sci. Istit. Bologna Cl. Sci. Fis. Rend. (13), 8 (1980/81), 191–195. | MR

230. M. Kisielewicz: Compactness and upper semicontinuity of solution set of generalized differential equation in a separable Banach space. Demonstratio Math., 15 (1982), 753–761. | MR

231. M. Kisielewicz: Properties of solution set of stochastic inclusions. J. Appl. Math. Stochastic Anal., 6 (1993), 217–235. | MR | Zbl

232. M. Kisielewicz: Quasi-retractive representation of solution sets to stochastic inclusions. J. Appl. Math. Stochastic Anal., 10 (1997), 227–238. | MR | Zbl

233. B. S. Klebanov, V. V. Filippov: On the acyclicity of the solution set of the Cauchy problem for differential equations. Mat. Zametki, 62 (1997). | MR

234. P. Korman: The global solution set for a class of semilinear problems. J. Math. Anal. Appl., 226 (1998), 101–120. | MR | Zbl

235. A. V. Lakeev, S. I. Noskov: Description of the solution set of a linear equation with an interval-defined operator and right-hand side. Dokl. Akad. Nauk, 330 (1993), 430–433. | MR

236. V. P. Maksimov: On the parametrization of the solution set of a functional-differential equation. Funct. Differ. Equ., Perm. Politekh. Inst., Perm, (1988), 14–21. (in Russian) | MR

237. V. P. Maksimov: On the parametrization of the solution set of a functional-differential equation. Funct. Differ. Equ., 3 (1996), 371–378. | MR | Zbl

238. A. Margheri, P. Zecca: Solution sets and boundary value problems in Banach spaces. Topol. Methods Nonlinear Anal., 2 (1993), 179–188. | MR | Zbl

239. A. Margheri, P. Zecca: Solution sets of multivalued Sturm–Liouville problems in Banach spaces. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 5 (1994), 161–166. | MR | Zbl

240. J. T. Markin: Stability of solution sets for generalized differential equations. J. Math. Anal. Appl., 46 (1974), 289–291. | MR | Zbl

241. M. Martelli, A. Vignoli: On the structure of the solution set of nonlinear equations. Nonlinear Anal., 7 (1983), 685–693. | MR | Zbl

242. I. Massabò, J. Pejsachowicz: On the connectivity properties of the solution set of parametrized families of compact vector fields. J. Funct. Anal., 59 (1984), 151–166. | MR

243. P. S. Milojević: On the index and the covering dimension of the solution set of semilinear equations. Nonlinear Functional Analysis and its Applications, Part 2 (Berkeley, Calif., 1983), Amer. Math. Soc., Providence, R.I., 1986, 183–205. | MR

244. P. S. Milojević: On the dimension and the index of the solution set of nonlinear equations. Trans. Amer. Math. Soc., 347 (1995), 835–856. | MR

245. O. Naselli: On the solution set of an equation of the type $f (t, \Phi(u)(t)) = 0$. Set-Valued Anal., 4 (1996), 399–405. | MR | Zbl

246. J. J. Nieto: On the structure of the solution set for first order differential equations. Appl. Math. Comput., 16 (1985), 177–187. | MR

247. J. J. Nieto: Structure of the solution set for semilinear elliptic equations. Differential Equations: Qualitative Theory, Vol. I, II (Szeged, 1984), North-Holland, Amsterdam, 1987, 799–807. | MR

248. W. Orlicz, S. Szufla: On the structure of $L^\varphi $-solution sets of integral equations in Banach spaces. Studia Math., 77 (1984), 465–477. | MR

249. V. G. Osmolovskiĭ: The local structure of the solution set of a first-order nonlinear boundary value problem with constraints at points. Sibirsk. Mat. Zh., 27 (1986), 140–154, 206. | MR

250. N. S. Papageorgiou: On the solution set of evolution inclusions driven by time dependent subdifferentials. Math. Japon., 37 (1992), 1087–1099. | MR | Zbl

251. F. Papalini: Properties of the solution set of evolution inclusions. Nonlinear Anal., 26 (1996), 1279–1292. | MR | Zbl

252. M. P. Pera: A topological method for solving nonlinear equations in Banach spaces and some related global results on the structure of the solution sets. Rend. Sem. Mat. Univ. Politec. Torino, 41 (1983), 9–30. | MR | Zbl

253. E. S. Polovinkin: The properties of continuity and differentiation of solution sets of Lipschitzean differential inclusions Modeling. Estimation and Control of Systems with Uncertainty (Sopron, 1990), Birkhäuser, Boston, 1991, 349–360. | MR

254. B. Ricceri: On the topological dimension of the solution set of a class of nonlinear equations. C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 65–70. | MR | Zbl

255. L. E. Rybiński: A fixed point approach in the study of the solution sets of Lipschitzian functional-differential inclusions. J. Math. Anal. Appl., 160 (1991), 24–46.

256. E. Serra M. Tarallo, S. Terracini: On the structure of the solution set of forced pendulum-type equations. J. Differ. Equ., 131 (1996), 189–208. | MR

257. A. Sghir: On the solution set of second-order delay differential inclusions in Banach spaces. Ann. Math. Blaise Pascal, 7 (2000), 65–79. | MR | Zbl

258. W. Song: The solution set of a differential inclusion on a closed set of a Banach space. Appl. Math., Warsaw, 23 (1995), 13–23. | MR | Zbl

259. W. Sosulski: Compactness and upper semicontinuity of solution set of functional-differential equations of hyperbolic type. Comment. Math. Prace Mat., 25 (1985), 359–362. | MR | Zbl

260. J. S. Spraker, D. C. Biles: A comparison of the Carathéodory and Filippov solution sets. J. Math. Anal. Appl., 198 (1996), 571–580. | MR

261. V. Staicu: Continuous selections of solution sets to evolution equations. Proc. Amer. Math. Soc., 113 (1991), 403–413. | MR | Zbl

262. V. Staicu: On the solution sets to nonconvex differential inclusions of evolution type. Discrete Contin. Dynam. Systems, 2 (1998), 244–252. | MR

263. V. Staicu, H. Wu: Arcwise connectedness of solution sets to Lipschitzean differential inclusions. Boll. Un. Mat. Ital. A (7), 5 (1991), 253–256. | MR | Zbl

264. S. Szufla: Solutions sets of non-linear integral equations. Funkcial. Ekvac., 17 (1974), 67–71. | MR

265. S. Szufla: On the structure of solution sets of nonlinear equations. Differential Equations and Optimal Control (Kalsk, 1988), Higher College Engrg., Zielona Góra, 1989, 33–39. | MR

266. A. A. Tolstonogov: On the density and “being boundary” for the solution set of a differential inclusion in a Banach space. Dokl. Akad. Nauk SSSR, 261 (1981), 293–296. | MR

267. A. A. Tolstonogov: The solution set of a differential inclusion in a Banach space. II. Sibirsk. Mat. Zh., 25 (1984), 159–173. | MR

268. A. A. Tolstonogov, P. I. Chugunov: The solution set of a differential inclusion in a Banach space. I. Sibirsk. Mat. Zh., 24 (1983), 144–159. | MR

269. G. M. Troianiello: Structure of the solution set for a class of nonlinear parabolic problems. Nonlinear Parabolic Equations: Qualitative Properties of Solutions (Rome, 1985), Longman Sci. Tech., Harlow, 1987, 219–225. | MR

270. H. D. Tuan: On the continuous dependence on parameter of the solution set of differential inclusions. Z. Anal. Anwendungen, 11 (1992), 215–220. | MR | Zbl

271. Ya. I. Umanskiĭ: On a property of the solution set of differential inclusions in a Banach space. Differentsial’nye Uravneniya, 28 (1992), 1346–1351, 1468. | MR

272. V. Veliov: Convergence of the solution set of singularly perturbed differential inclusions. Proceedings of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996), Nonlinear Anal., 30 (1997), 5505–5514. | MR

273. Z. H. Wang: Existence of solutions for parabolic type evolution differential inclusions and the property of the solution set. Appl. Math. Mech., 20 (1999), 314–318. | MR

274. Z. K. Wei: On the existence of unbounded connected branches of solution sets of a class of semilinear operator equations. Bull. Soc. Math. Belg. Sér. B, 38 (1986), 14–30. | MR

275. Q. J. Zhu: On the solution set of differential inclusions in a Banach space. J. Differ. Equ., 93 (1991), 213–237. | MR

276. V. G. Zvyagin: The structure of the solution set of a nonlinear elliptic boundary value problem under fixed boundary conditions. Topological and Geometric Methods of Analysis, Voronezh. Gos. Univ., Voronezh, 1989, 152–158, 173. (in Russian) | MR