The $l^p$ trichotomy for difference systems and applications
Archivum mathematicum, Tome 36 (2000) no. 5, pp. 519-529 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 39A10, 39A11, 39A12
@article{ARM_2000_36_5_a19,
     author = {Matucci, Serena},
     title = {The $l^p$ trichotomy for difference systems and applications},
     journal = {Archivum mathematicum},
     pages = {519--529},
     year = {2000},
     volume = {36},
     number = {5},
     mrnumber = {1822822},
     zbl = {1090.39501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a19/}
}
TY  - JOUR
AU  - Matucci, Serena
TI  - The $l^p$ trichotomy for difference systems and applications
JO  - Archivum mathematicum
PY  - 2000
SP  - 519
EP  - 529
VL  - 36
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a19/
LA  - en
ID  - ARM_2000_36_5_a19
ER  - 
%0 Journal Article
%A Matucci, Serena
%T The $l^p$ trichotomy for difference systems and applications
%J Archivum mathematicum
%D 2000
%P 519-529
%V 36
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a19/
%G en
%F ARM_2000_36_5_a19
Matucci, Serena. The $l^p$ trichotomy for difference systems and applications. Archivum mathematicum, Tome 36 (2000) no. 5, pp. 519-529. http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a19/

1. Agarval R. P.: Difference Equations and Inequalities. Theory, Methods and Applications. Second Edition, Pure and Appl. Math. Vol. 228, Marcel Dekker, New York, 2000. | MR

2. Alonso A. I., Hong J., Obaya R.: Exponential Dichotomy and Trichotomy of Difference Equations. J. Comput. Math. Appl., 38 (1999), 41–49. | MR

3. Cecchi M., Došlá Z., Marini M.: Positive Decreasing Solutions of Quasilinear Difference Equations. to appear (2001). | MR

4. Cecchi M., Marini M., Zezza P. L.: Asymptotic Properties of the Solutions of Nonlinear Equations with Dichotomies and Applications. Boll. U.M.I., Analisi Funz. Appl., Serie IV, 1 (1982), 209–234. | MR

5. Conti R.: Linear Differential Equations and Control. Instit. Math. Vol. 1, Acad. Press, New York, 1976. | MR | Zbl

6. Coppel W. A.: Stability and Asymptotic Behavior of Differential Equations. Heat Math. Monograph, Boston, 1965. | MR | Zbl

7. Coppel W. A.: Dichotomies in Stability Theory. Lecture Notes in Math. Vol. 629, Springer-Verlag, Berlin, 1978. | MR | Zbl

8. Elaydi S., Hajek O.: Exponential Trichotomy of Differential Systems. J. Math. Anal. Appl., 129 (1988), 362–374. | MR | Zbl

9. Elaydi S., Janglajew K.: Dichotomy and Trichotomy of Difference Equations. J. Difference Equations Appl., 3 (1998), 417–448. | MR | Zbl

10. Medina R., Pinto M.: Dichotomies and Asymptotic Equivalence of Nonlinear Difference Systems. J. Difference Equations Appl., 5, (1999), 287–303. | MR | Zbl

11. Papaschinopoulos G.: On Exponential Trichotomy of Linear Difference Equations. Appl. Anal., 40 (1991), 89–109. | MR | Zbl

12. Papaschinopoulos G., Schinas J.: A Criterion for the Exponential Dichotomy of Difference Equations. Rend. Sem. Fac. Sci. Univ. Cagliari, 54, (1), (1984), 61–71. | MR | Zbl

13. Papaschinopoulos G., Schinas J.: Criteria for an Exponential Dichotomy of Difference Equations. Czechoslovak Math. J., 35 (1985), 295–299. | MR | Zbl

14. Papaschinopoulos G., Schinas J.: Conditions for Exponential Dichotomy of Difference Equations. Rad. Mat., 1, (1), (1985), 9–24. | MR | Zbl

15. Sacher R. J., Sell G. R.: Existence of Dichotomies and Invariant splittings for Linear Differential Systems, III. J. Differential Eq. 22 (1976), 497–522. | MR

16. Talpalaru P.: Asymptotic Relationship Between Solutions of Two Systems of Difference Equations. Bul. Inst. Politechnic Iasi, XXI (XXV), f. 3–4, Sect. I (1975), 49–58. | MR | Zbl

17. Talpalaru P.: On Stability of Difference Systems. An. St. Univ. “Al. I. Cuza” Iasi, XXIII Sect. I (1) (1977), 71–76. | MR | Zbl

18. Talpalaru P.: Asymptotic Properties of the Solutions of Difference Systems via $l^p$ - Dichotomy. An. St. Univ. “Al. I. Cuza” Iasi, XXXVII Sect. I (2) (1991), 165–172. | MR