Sturm-Liouville difference equations and banded matrices
Archivum mathematicum, Tome 36 (2000) no. 5, pp. 499-505 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 15A18, 39A10, 39A12, 65F15
@article{ARM_2000_36_5_a16,
     author = {Kratz, Werner},
     title = {Sturm-Liouville difference equations and banded matrices},
     journal = {Archivum mathematicum},
     pages = {499--505},
     year = {2000},
     volume = {36},
     number = {5},
     mrnumber = {1822819},
     zbl = {1072.39500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a16/}
}
TY  - JOUR
AU  - Kratz, Werner
TI  - Sturm-Liouville difference equations and banded matrices
JO  - Archivum mathematicum
PY  - 2000
SP  - 499
EP  - 505
VL  - 36
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a16/
LA  - en
ID  - ARM_2000_36_5_a16
ER  - 
%0 Journal Article
%A Kratz, Werner
%T Sturm-Liouville difference equations and banded matrices
%J Archivum mathematicum
%D 2000
%P 499-505
%V 36
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a16/
%G en
%F ARM_2000_36_5_a16
Kratz, Werner. Sturm-Liouville difference equations and banded matrices. Archivum mathematicum, Tome 36 (2000) no. 5, pp. 499-505. http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a16/

1. M. Bohner: Zur Positivität diskreter quadratischer Funktionale. Dissertation, Ulm, (1995).

2. M. Bohner, O. Došlý: Positivity of block tridiagonal matrices. SIAM J. Matrix Anal. Appl. 20 (1999), 182–195. | MR

3. M. Bohner O. Došlý, W. Kratz: An oscillation theorem for discrete eigenvalue problems. to appear. | MR

4. G.H. Golub, C.F. Van Loan: Matrix computations. John Hopkins University Press, Baltimore, (1983). | MR | Zbl

5. R.A.Horn, C.A. Johnson: Matrix analysis. Cambridge University Press, Cambridge, (1991). | Zbl

6. W. Kratz: Quadratic functionals in variational analysis and control theory. Akademie Verlag, Berlin, (1995). | MR | Zbl

7. W.T. Reid: Sturmian theory for ordinary differential equations. Springer Verlag, New York, (1980). | MR | Zbl

8. H.R. Schwarz H. Rutishauser, E. Stiefel: Numerik symmetrischer Matrizen. Teubner Verlag, Stuttgart, (1972).

9. J.H. Wilkinson: The algebraic eigenvalue problem. Clarendon Press, Oxford, (1965). | MR | Zbl