Property $A$ of the $(n+1)^{th}$ order differential equation $\left [\frac 1{r_1(t)}\left (x^{(n)}(t)+p(t)x(t)\right )\right ]' = f(t,x(t),\cdots ,x^{(n)}(t))$
Archivum mathematicum, Tome 36 (2000) no. 5, pp. 487-498
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{ARM_2000_36_5_a15,
author = {Kov\'a\v{c}ov\'a, Monika},
title = {Property $A$ of the $(n+1)^{th}$ order differential equation $\left [\frac 1{r_1(t)}\left (x^{(n)}(t)+p(t)x(t)\right )\right ]' = f(t,x(t),\cdots ,x^{(n)}(t))$},
journal = {Archivum mathematicum},
pages = {487--498},
year = {2000},
volume = {36},
number = {5},
mrnumber = {1822818},
zbl = {1072.34034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a15/}
}
TY - JOUR
AU - Kováčová, Monika
TI - Property $A$ of the $(n+1)^{th}$ order differential equation $\left [\frac 1{r_1(t)}\left (x^{(n)}(t)+p(t)x(t)\right )\right ]' = f(t,x(t),\cdots ,x^{(n)}(t))$
JO - Archivum mathematicum
PY - 2000
SP - 487
EP - 498
VL - 36
IS - 5
UR - http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a15/
LA - en
ID - ARM_2000_36_5_a15
ER -
%0 Journal Article
%A Kováčová, Monika
%T Property $A$ of the $(n+1)^{th}$ order differential equation $\left [\frac 1{r_1(t)}\left (x^{(n)}(t)+p(t)x(t)\right )\right ]' = f(t,x(t),\cdots ,x^{(n)}(t))$
%J Archivum mathematicum
%D 2000
%P 487-498
%V 36
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a15/
%G en
%F ARM_2000_36_5_a15
Kováčová, Monika. Property $A$ of the $(n+1)^{th}$ order differential equation $\left [\frac 1{r_1(t)}\left (x^{(n)}(t)+p(t)x(t)\right )\right ]' = f(t,x(t),\cdots ,x^{(n)}(t))$. Archivum mathematicum, Tome 36 (2000) no. 5, pp. 487-498. http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a15/