@article{ARM_2000_36_5_a15,
author = {Kov\'a\v{c}ov\'a, Monika},
title = {Property $A$ of the $(n+1)^{th}$ order differential equation $\left [\frac 1{r_1(t)}\left (x^{(n)}(t)+p(t)x(t)\right )\right ]' = f(t,x(t),\cdots ,x^{(n)}(t))$},
journal = {Archivum mathematicum},
pages = {487--498},
year = {2000},
volume = {36},
number = {5},
mrnumber = {1822818},
zbl = {1072.34034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a15/}
}
TY - JOUR
AU - Kováčová, Monika
TI - Property $A$ of the $(n+1)^{th}$ order differential equation $\left [\frac 1{r_1(t)}\left (x^{(n)}(t)+p(t)x(t)\right )\right ]' = f(t,x(t),\cdots ,x^{(n)}(t))$
JO - Archivum mathematicum
PY - 2000
SP - 487
EP - 498
VL - 36
IS - 5
UR - http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a15/
LA - en
ID - ARM_2000_36_5_a15
ER -
%0 Journal Article
%A Kováčová, Monika
%T Property $A$ of the $(n+1)^{th}$ order differential equation $\left [\frac 1{r_1(t)}\left (x^{(n)}(t)+p(t)x(t)\right )\right ]' = f(t,x(t),\cdots ,x^{(n)}(t))$
%J Archivum mathematicum
%D 2000
%P 487-498
%V 36
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a15/
%G en
%F ARM_2000_36_5_a15
Kováčová, Monika. Property $A$ of the $(n+1)^{th}$ order differential equation $\left [\frac 1{r_1(t)}\left (x^{(n)}(t)+p(t)x(t)\right )\right ]' = f(t,x(t),\cdots ,x^{(n)}(t))$. Archivum mathematicum, Tome 36 (2000) no. 5, pp. 487-498. http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a15/
1. Cecchi M., Došlá Z., Marini M.: Comparison theorems for third order differential equations. Proceedings of Dynamic Systems and Applications, Vol. 2 (Atlanta, GA,1995). | MR
2. Greguš M., Graef J. R.: On a certain nonautonomous nonlinear third order differential equation. Applicable Analysis, 1995, 58, no. 1-2, 175-185. | MR | Zbl
3. Greguš M., Graef J. R., Gera M.: Oscillating nonlinear third order differential equations. Nonlinear Anal. Nonlinear Analysis. Theory, Methods & Applications., 1997, 28, No. 10, 1611-1622. | MR | Zbl
4. Greguš M., Gera M., Graef J. R.: On oscillatory and asymptotic properties of solutions of certain nonlinear third order differential equations. Nonlinear Analysis. Theory, Methods & Applications. 1998, 32, No. 3, 417–425. | MR | Zbl
5. Kiguradze I. T.: Oscillation tests for a class of ordinary differential equations. Diferen. Uravnenja, 28 No. 2, 1992, 180-190. | MR | Zbl
6. Kováčová M.: Comparison Theorems for the n-th Order Differential Equations. Nonlinear Analysis Forum, 2000, vol. 5, 173–190. | MR