@article{ARM_2000_36_5_a14,
author = {Koksch, Norbert},
title = {A modified strong squeezing property and the existence of inertial manifolds of semiflows},
journal = {Archivum mathematicum},
pages = {477--486},
year = {2000},
volume = {36},
number = {5},
mrnumber = {1822817},
zbl = {1072.37053},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a14/}
}
Koksch, Norbert. A modified strong squeezing property and the existence of inertial manifolds of semiflows. Archivum mathematicum, Tome 36 (2000) no. 5, pp. 477-486. http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a14/
1. P. Constantin C. Foias B. Nicolaenko, and R. Temam: Nouveaux resultats sur les variétés inertielles pour les équations différentielles dissipatives. (New results on the inertial manifolds for dissipative differential equations), C. R. Acad. Sci., Paris, Ser. I 302 (1986), 375–378. | MR
2. P. Constantin C. Foias B. Nicolaenko, and R. Temam: Integral manifolds and inertial manifolds for dissipative partial differential equations. Applied Mathematical Sciences, vol. 70, Springer, 1989. | MR
3. C. Foias B. Nicolaenko G.R. Sell, and R. Temam: Variétés inertielles pour l’équation de Kuramoto-Sivashinsky. (Inertial manifolds for the Kuramoto-Sivashinsky equation), C. R. Acad. Sci., Paris, Ser. I 301 (1985), 285–288. | MR
4. C. Foias G.R. Sell, and R. Temam: Variétés inertielles des équations différentielles dissipatives. (Inertial manifolds for dissipative differential equations), C. R. Acad. Sci., Paris, Ser. I 301 (1985), 139–141. | MR
5. C. Foias G.R. Sell, and R. Temam: Inertial manifolds for nonlinear evolutionary equations. J. of Differential Equations 73 (1988), 309–353. | MR
6. C. Foias G.R. Sell, and E.S. Titi: Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations. J. of Dynamics and Differential Equations 1 (1989), no. 2, 199–244. | MR
7. D. Henry: Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics, vol. 850, Springer, 1981. | MR | Zbl
8. N. Koksch: A comparison principle approach to the existence and smootheness of integral manifolds. Habilitation, Fak. Mathematik und Naturwissenschaften der TU Dresden, 1999.
9. M. Miklavčič: Applied functional analysis and partial differential equations. World Scientific, Singnapur, New Jersey, London, Hong Kong, 1998. | MR
10. H. Ninomiya: Some remarks on inertial manifolds. J. Math. Kyoto Univ. 32 (1992), no. 4, 667–688. | MR | Zbl
11. J.C. Robinson: Inertial manifolds and the cone condition. Dyn. Syst. Appl. 2 (1993), no. 3, 311–330. | MR | Zbl
12. J.C. Robinson: The asymptotic completeness of inertial manifolds. Nonlinearity 9 (1996), 1325–1340. | MR | Zbl
13. A.V. Romanov: Sharp estimates of the dimension of inertial manifolds for nonlinear parabolic equations. Russ. Acad. Sci., Izv., Math. 43 (1994), no. 1, 31–47. | MR
14. R. Temam: Infinite-dimensional dynamical systems in mechanics and physics. 2nd ed., Applied Mathematical Sciences, vol. 68, Springer, New York, 1997. | MR