The generalized coincidence index --- application to a boundary value problem
Archivum mathematicum, Tome 36 (2000) no. 5, pp. 447-460 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34B15, 34G20, 47H09, 47H11, 47J05, 55M25
@article{ARM_2000_36_5_a10,
     author = {Gabor, Dorota},
     title = {The generalized coincidence index --- application to a boundary value problem},
     journal = {Archivum mathematicum},
     pages = {447--460},
     year = {2000},
     volume = {36},
     number = {5},
     mrnumber = {1822813},
     zbl = {1090.34576},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a10/}
}
TY  - JOUR
AU  - Gabor, Dorota
TI  - The generalized coincidence index --- application to a boundary value problem
JO  - Archivum mathematicum
PY  - 2000
SP  - 447
EP  - 460
VL  - 36
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a10/
LA  - en
ID  - ARM_2000_36_5_a10
ER  - 
%0 Journal Article
%A Gabor, Dorota
%T The generalized coincidence index --- application to a boundary value problem
%J Archivum mathematicum
%D 2000
%P 447-460
%V 36
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a10/
%G en
%F ARM_2000_36_5_a10
Gabor, Dorota. The generalized coincidence index --- application to a boundary value problem. Archivum mathematicum, Tome 36 (2000) no. 5, pp. 447-460. http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a10/

1. R. R. Akhmerov M. I. Kamenskii A. S. Potapov A. E. Rodkina B. N. Sadovskii: Measures of noncompactness and condensing operators. Birkhäuser Verlag, Basel-Boston-Berlin 1992. | MR

2. Yu. G. Borisovich B. D. Gelman A. D. Myshkis, V. V. Obukhovskii: Topological methods in the fixed point theory of multivalued mappings. Russian Math. Surveys 35 (1980), 65-143. | MR

3. D. Gabor W. Kryszewski: A coincidence Theory involving Fredholm operators of nonnegative index. Topol. Methods Nonlinear Anal. 15, 1 (2000), 43-59. | MR

4. D. Gabor: The coincidence index for fundamentally contractible multivalued maps with nonconvex values. to appear in Ann. Polon. Math. | MR | Zbl

5. D. Gabor: Coincidence points of Fredholm operators and noncompact set-valued maps. (in Polish), Ph.D. Thesis, N. Copernicus University, Toruń 2000.

6. K. Gęba I. Massabo A. Vignoli: Generalized topological degree and bifurcation. Proc. Conf. on Nonlinear Anal. Appl., Maratea Italy, 1986, D. Reidel Publ. Co., 55-73. | MR

7. S-T. Hu: Homotopy theory. Academic Press, New York 1959. | MR | Zbl

8. W. Kryszewski: Homotopy properties of set-valued mappings. Wyd. Uniwersytetu Mikolaja Kopernika, Toruń 1997.

9. J. Mawhin: Topological degree methods in nonlinear boundary value problems. Conf. Board Math. Sc. 40, Amer. Math. Soc., Providence, Rhode Island 1979. | MR | Zbl

10. T. Pruszko: Some applications of the topological degree theory to multi-valued boundary value problems. Dissertationes Math. 229, 1-52. | Zbl