Oscillation Theory of Linear Difference Equations
Archivum mathematicum, Tome 36 (2000) no. 5, pp. 329-342 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 39-01, 39A10, 39A11
@article{ARM_2000_36_5_a1,
     author = {Do\v{s}l\'y, Ond\v{r}ej},
     title = {Oscillation {Theory} of {Linear} {Difference} {Equations}},
     journal = {Archivum mathematicum},
     pages = {329--342},
     year = {2000},
     volume = {36},
     number = {5},
     mrnumber = {1822804},
     zbl = {1090.39001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a1/}
}
TY  - JOUR
AU  - Došlý, Ondřej
TI  - Oscillation Theory of Linear Difference Equations
JO  - Archivum mathematicum
PY  - 2000
SP  - 329
EP  - 342
VL  - 36
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a1/
LA  - en
ID  - ARM_2000_36_5_a1
ER  - 
%0 Journal Article
%A Došlý, Ondřej
%T Oscillation Theory of Linear Difference Equations
%J Archivum mathematicum
%D 2000
%P 329-342
%V 36
%N 5
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a1/
%G en
%F ARM_2000_36_5_a1
Došlý, Ondřej. Oscillation Theory of Linear Difference Equations. Archivum mathematicum, Tome 36 (2000) no. 5, pp. 329-342. http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a1/

1. R. P. Agarwal: Difference Equations and Inequalities: Theory, Methods and Applications. Second Edition, Pure and Applied Mathematics, M. Dekker, New York - Basel - Hong Kong, 2000. | MR | Zbl

2. C. D. Ahlbrandt A. C. Peterson: Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations. Kluwer Academic Publishers, Boston, 1996. | MR

3. D. Anderson: Discrete trigonometric matrix functions. Panamer. Math. J. 7 (1997), 39-54. | MR | Zbl

4. J. H. Barrett: A Prüfer transformation for matrix differential equations. Proc. Amer. Math. Soc. 8 (1957), 510-518. | MR | Zbl

5. M. Bohner: Linear Hamiltonian difference systems: disconjugacy and Jacobi-type conditions. J. Math. Anal. Appl. 199 (1996), 804–826. | MR

6. M. Bohner O. Došlý: Disconjugacy and transformations for symplectic systems. Rocky Mountain J. Math. 27 (1997), 707–743. | MR

7. M. Bohner O. Došlý: Trigonometric transformation of symplectic difference systems. J. Differential Equ. 163 (2000), 113-129. | MR

8. M. Bohner O. Došlý: Discrete Prüfer transformation. to appear in Proc. Amer. Math. Soc. | MR

9. W. A. Coppel: Disconjugacy. Lectures Notes in Math., No. 220, Springer Verlag, Berlin-Heidelberg 1971. | MR | Zbl

10. O. Došlý: On transformations of self-adjoint differential systems and their reciprocals. Ann. Polon. Math. 50 (1990), 223-234. | MR

11. O. Došlý: Oscillation criteria for higher order Sturm-Liouville difference equations. J. Differ. Equations Appl. 4 (1998), 425-450. | MR

12. O. Došlý: Methods of oscillation theory of half-linear second order differential equations. Czech. Math. J. 50 (125) (2000), 657-671. | MR

13. O. Došlý R. Hilscher: A class of Sturm-Liouville difference equations: (non)oscillation constants and property BD. submitted.

14. O. Došlý J. Osička: Kneser-type oscillation criteria for self-adjoint, two term, differential equations. Georgian J. Math., 2 (1995), 241-258. | MR

15. O. Došlý J. Osička: Oscillation and nonoscillation of higher order self-adjoint differential equations. to appear in Czech. Math. J. | MR

16. O. Došlý P. Řehák: Nonoscillation criteria for half-linear second order difference equations. to appear in Comput. Appl. Math. | MR

17. S. N. Elaydi: An Introduction to Difference Equations. Second Edition, Springer Verlag, 2000. | MR | Zbl

18. U. Elias: Oscillation Theory of Two-Term Differential equations. Kluwer, Dordrecht-Boston-London, 1997. | MR | Zbl

19. I. M. Gelfand S. V. Fomin: Calculus of Variations. Prentice Hall, Engelwood, 1963. | MR

20. B. Harris R. J. Kruger W. T.Trench: Trench’s canonical form for a disconjugate n-th order linear difference equations. Panamer. Math. J. 8 (1998), 55-71. | MR

21. P. Hartman: Difference equations: disconjugacy, principal solutions, Green’s function, complete monotonicity. Trans. Amer. Math. Soc. 246 (1978), 1–30. | MR

22. W. G. Kelley A. Peterson: Difference Equations: An Introduction with Applications. Acad. Press, San Diego, 1991. | MR

23. S. Peňa: Discrete spectra criteria for singular difference operators. Math. Bohem. 124 (1999), 35–44. | MR

24. G. Polya: On the mean-value theorem corresponding to a given linear homogeneous differential equation. Trans. Amer. Math. Soc. 24 (1924), 312-324. | MR

25. H. Prüfer: Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Funktionen. Math. Ann. 95 (1926), 499-518. | MR

26. W. T. Reid: Sturmian Theory for Ordinary Differential Equations. Springer Verlag, New York-Heidelberg-Berlin 1980. | MR | Zbl

27. W. F. Trench: Canonical forms and principal systems of general disconjugate equations. Trans. Amer. Math. Soc. 189 (1974), 319-327. | MR