@article{ARM_2000_36_5_a1,
author = {Do\v{s}l\'y, Ond\v{r}ej},
title = {Oscillation {Theory} of {Linear} {Difference} {Equations}},
journal = {Archivum mathematicum},
pages = {329--342},
year = {2000},
volume = {36},
number = {5},
mrnumber = {1822804},
zbl = {1090.39001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a1/}
}
Došlý, Ondřej. Oscillation Theory of Linear Difference Equations. Archivum mathematicum, Tome 36 (2000) no. 5, pp. 329-342. http://geodesic.mathdoc.fr/item/ARM_2000_36_5_a1/
1. R. P. Agarwal: Difference Equations and Inequalities: Theory, Methods and Applications. Second Edition, Pure and Applied Mathematics, M. Dekker, New York - Basel - Hong Kong, 2000. | MR | Zbl
2. C. D. Ahlbrandt A. C. Peterson: Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations. Kluwer Academic Publishers, Boston, 1996. | MR
3. D. Anderson: Discrete trigonometric matrix functions. Panamer. Math. J. 7 (1997), 39-54. | MR | Zbl
4. J. H. Barrett: A Prüfer transformation for matrix differential equations. Proc. Amer. Math. Soc. 8 (1957), 510-518. | MR | Zbl
5. M. Bohner: Linear Hamiltonian difference systems: disconjugacy and Jacobi-type conditions. J. Math. Anal. Appl. 199 (1996), 804–826. | MR
6. M. Bohner O. Došlý: Disconjugacy and transformations for symplectic systems. Rocky Mountain J. Math. 27 (1997), 707–743. | MR
7. M. Bohner O. Došlý: Trigonometric transformation of symplectic difference systems. J. Differential Equ. 163 (2000), 113-129. | MR
8. M. Bohner O. Došlý: Discrete Prüfer transformation. to appear in Proc. Amer. Math. Soc. | MR
9. W. A. Coppel: Disconjugacy. Lectures Notes in Math., No. 220, Springer Verlag, Berlin-Heidelberg 1971. | MR | Zbl
10. O. Došlý: On transformations of self-adjoint differential systems and their reciprocals. Ann. Polon. Math. 50 (1990), 223-234. | MR
11. O. Došlý: Oscillation criteria for higher order Sturm-Liouville difference equations. J. Differ. Equations Appl. 4 (1998), 425-450. | MR
12. O. Došlý: Methods of oscillation theory of half-linear second order differential equations. Czech. Math. J. 50 (125) (2000), 657-671. | MR
13. O. Došlý R. Hilscher: A class of Sturm-Liouville difference equations: (non)oscillation constants and property BD. submitted.
14. O. Došlý J. Osička: Kneser-type oscillation criteria for self-adjoint, two term, differential equations. Georgian J. Math., 2 (1995), 241-258. | MR
15. O. Došlý J. Osička: Oscillation and nonoscillation of higher order self-adjoint differential equations. to appear in Czech. Math. J. | MR
16. O. Došlý P. Řehák: Nonoscillation criteria for half-linear second order difference equations. to appear in Comput. Appl. Math. | MR
17. S. N. Elaydi: An Introduction to Difference Equations. Second Edition, Springer Verlag, 2000. | MR | Zbl
18. U. Elias: Oscillation Theory of Two-Term Differential equations. Kluwer, Dordrecht-Boston-London, 1997. | MR | Zbl
19. I. M. Gelfand S. V. Fomin: Calculus of Variations. Prentice Hall, Engelwood, 1963. | MR
20. B. Harris R. J. Kruger W. T.Trench: Trench’s canonical form for a disconjugate n-th order linear difference equations. Panamer. Math. J. 8 (1998), 55-71. | MR
21. P. Hartman: Difference equations: disconjugacy, principal solutions, Green’s function, complete monotonicity. Trans. Amer. Math. Soc. 246 (1978), 1–30. | MR
22. W. G. Kelley A. Peterson: Difference Equations: An Introduction with Applications. Acad. Press, San Diego, 1991. | MR
23. S. Peňa: Discrete spectra criteria for singular difference operators. Math. Bohem. 124 (1999), 35–44. | MR
24. G. Polya: On the mean-value theorem corresponding to a given linear homogeneous differential equation. Trans. Amer. Math. Soc. 24 (1924), 312-324. | MR
25. H. Prüfer: Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Funktionen. Math. Ann. 95 (1926), 499-518. | MR
26. W. T. Reid: Sturmian Theory for Ordinary Differential Equations. Springer Verlag, New York-Heidelberg-Berlin 1980. | MR | Zbl
27. W. F. Trench: Canonical forms and principal systems of general disconjugate equations. Trans. Amer. Math. Soc. 189 (1974), 319-327. | MR