Ito equation as a geodesic flow on $\widehat {\text{Diff}\sp {s}(S\sp 1) \bigodot C\sp {\infty }(S\sp 1)}$
Archivum mathematicum, Tome 36 (2000) no. 4, pp. 305-312 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The Ito equation is shown to be a geodesic flow of $L^2$ metric on the semidirect product space ${\widehat{{\it Diff}^s(S^1) \bigodot C^{\infty }(S^1)}}$, where ${\it Diff}^s(S^1)$ is the group of orientation preserving Sobolev $H^s$ diffeomorphisms of the circle. We also study a geodesic flow of a $H^1$ metric.
The Ito equation is shown to be a geodesic flow of $L^2$ metric on the semidirect product space ${\widehat{{\it Diff}^s(S^1) \bigodot C^{\infty }(S^1)}}$, where ${\it Diff}^s(S^1)$ is the group of orientation preserving Sobolev $H^s$ diffeomorphisms of the circle. We also study a geodesic flow of a $H^1$ metric.
Classification : 35Q53, 37K10, 37K65, 58D05
Keywords: Bott-Virasoro Group; Ito equation
@article{ARM_2000_36_4_a7,
     author = {Guha, Partha},
     title = {Ito equation as a geodesic flow on $\widehat {\text{Diff}\sp {s}(S\sp 1) \bigodot C\sp {\infty }(S\sp 1)}$},
     journal = {Archivum mathematicum},
     pages = {305--312},
     year = {2000},
     volume = {36},
     number = {4},
     mrnumber = {1811175},
     zbl = {1049.37045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a7/}
}
TY  - JOUR
AU  - Guha, Partha
TI  - Ito equation as a geodesic flow on $\widehat {\text{Diff}\sp {s}(S\sp 1) \bigodot C\sp {\infty }(S\sp 1)}$
JO  - Archivum mathematicum
PY  - 2000
SP  - 305
EP  - 312
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a7/
LA  - en
ID  - ARM_2000_36_4_a7
ER  - 
%0 Journal Article
%A Guha, Partha
%T Ito equation as a geodesic flow on $\widehat {\text{Diff}\sp {s}(S\sp 1) \bigodot C\sp {\infty }(S\sp 1)}$
%J Archivum mathematicum
%D 2000
%P 305-312
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a7/
%G en
%F ARM_2000_36_4_a7
Guha, Partha. Ito equation as a geodesic flow on $\widehat {\text{Diff}\sp {s}(S\sp 1) \bigodot C\sp {\infty }(S\sp 1)}$. Archivum mathematicum, Tome 36 (2000) no. 4, pp. 305-312. http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a7/

[1] Antonowicz M., Fordy A.: Coupled KdV equation with multi-Hamiltonian structures. Physica 28D (1987), 345–357. | MR

[2] Arbarello E., De Concini C., Kac V. G., Procesi C.: Moduli space of curves and representation theory. Comm. Math. Phys. 117 (1988), 1–36. | MR

[3] Arnold V. I.: Mathematical methods of classical mechanics. Second edition, Graduate Texts in Mathematics, Vol. 60, Springer-Verlag, 1989. | MR

[4] Camassa R., Holm D.: A completely integrable dispersiveshallow water equation with peaked solutions. Phys. Rev. Lett. 71 (1993), 1661–1664. | MR

[5] Cendra H., Holm D., Marsden J., Ratiu T.: Lagrangian reduction, the Euler-Poincar’e equations and semidirect products. to appear in the AMS Arnold Volume II, and all other references therein.

[6] Ebin D., Marsden J.: Groups of diffeomorphisms and themotion of an incompressible fluid. Ann. Math. 92 (1970), 102–163. | MR

[7] Guha P.: Diffeomorphism with some Sobolev metric, geodesic flow and integrable systems. IHES/M/98/69.

[8] Harnad J., Kupershmidt B. A.: Symplectic geometries on $T^{\ast }G$, Hamiltonian group actions and integrable systems. J. Geom. Phys. 16 (1995), 168-206. | MR | Zbl

[9] Ito M.: Symmetries and conservation laws of a coupled nonlinear wave equation. Phys. Lett. 91A (1982), 335–338. | MR

[10] Kirillov A. A.: Infinite dimensional Lie groups: their orbits, invariants and representations. The geometry of moments. Lect. Notes in Math. 970 (1982), Springer-Verlag, 101–123. | MR | Zbl

[11] Kirillov A. A.: Orbits of the group of diffeomorphisms of a circle and local superalgebras. Func. Anal. Appl. 15 (1980), 135–137.

[12] Kouranbaeva S.: The Camassa-Holm equation as a geodesic flow on the diffeomorphism group. Math-ph/9807021. | Zbl

[13] Marcel P., Ovsienko V., Roger C.: Extension of the Virasoro and Neveu-Schwartz algebras and generalized Sturm-Liouvilleoperators. Lett. Math. Phys. 40 (1997), 31–39. | MR

[14] Misiolek G.: A shallow water equation as a geodesic flow on the Bott-Virasoro group. J. Geom. Phys. 24 (1998), 203–208. | MR | Zbl

[15] Ovsienko V. Yu., Khesin B. A.: KdV super equation as an Euler equation. Funct. Anal. Appl. 21 (1987), 329–331. | MR

[16] Ovsienko V. Yu., Rogers C.: Extension of Virasoro group and Virasoro algebra by modules of tensor densities on $S^1$. Func. Anal. Appl.

[17] Shkoller S.: Geometry and the curvature of diffeomorphismgroups with $H^1$ metric and mean hydrodynamics. Math. AP/9807078.

[18] Segal G.: Unitary representations of some infinite dimensional groups. Comm. Math. Phys. 80 (1981), 301–342. | MR | Zbl