Ito equation as a geodesic flow on $\widehat {\text{Diff}\sp {s}(S\sp 1) \bigodot C\sp {\infty }(S\sp 1)}$
Archivum mathematicum, Tome 36 (2000) no. 4, pp. 305-312
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The Ito equation is shown to be a geodesic flow of $L^2$ metric on the semidirect product space ${\widehat{{\it Diff}^s(S^1) \bigodot C^{\infty }(S^1)}}$, where ${\it Diff}^s(S^1)$ is the group of orientation preserving Sobolev $H^s$ diffeomorphisms of the circle. We also study a geodesic flow of a $H^1$ metric.
The Ito equation is shown to be a geodesic flow of $L^2$ metric on the semidirect product space ${\widehat{{\it Diff}^s(S^1) \bigodot C^{\infty }(S^1)}}$, where ${\it Diff}^s(S^1)$ is the group of orientation preserving Sobolev $H^s$ diffeomorphisms of the circle. We also study a geodesic flow of a $H^1$ metric.
@article{ARM_2000_36_4_a7,
author = {Guha, Partha},
title = {Ito equation as a geodesic flow on $\widehat {\text{Diff}\sp {s}(S\sp 1) \bigodot C\sp {\infty }(S\sp 1)}$},
journal = {Archivum mathematicum},
pages = {305--312},
year = {2000},
volume = {36},
number = {4},
mrnumber = {1811175},
zbl = {1049.37045},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a7/}
}
Guha, Partha. Ito equation as a geodesic flow on $\widehat {\text{Diff}\sp {s}(S\sp 1) \bigodot C\sp {\infty }(S\sp 1)}$. Archivum mathematicum, Tome 36 (2000) no. 4, pp. 305-312. http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a7/