Natural transformations of separated jets
Archivum mathematicum, Tome 36 (2000) no. 4, pp. 297-303
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Given a map of a product of two manifolds into a third one, one can define its jets of separated orders $r$ and $s$. We study the functor $J$ of separated $(r;s)$-jets. We determine all natural transformations of $J$ into itself and we characterize the canonical exchange $J\rightarrow J^{s;r}$ from the naturality point of view.
Given a map of a product of two manifolds into a third one, one can define its jets of separated orders $r$ and $s$. We study the functor $J$ of separated $(r;s)$-jets. We determine all natural transformations of $J$ into itself and we characterize the canonical exchange $J\rightarrow J^{s;r}$ from the naturality point of view.
Classification :
58A20, 58A32
Keywords: separated jet; canonical exchange; natural transformation
Keywords: separated jet; canonical exchange; natural transformation
@article{ARM_2000_36_4_a6,
author = {Doupovec, Miroslav and Kol\'a\v{r}, Ivan},
title = {Natural transformations of separated jets},
journal = {Archivum mathematicum},
pages = {297--303},
year = {2000},
volume = {36},
number = {4},
mrnumber = {1811174},
zbl = {1049.58008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a6/}
}
Doupovec, Miroslav; Kolář, Ivan. Natural transformations of separated jets. Archivum mathematicum, Tome 36 (2000) no. 4, pp. 297-303. http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a6/
[1] Kawaguchi M.: Jets infinitésimaux d’ordre séparé supérieur. Proc. Japan Acad. 37 (1961), 18–22. | MR | Zbl
[2] Kolář I.: On some operations with connections. Math. Nachr. 69 (1975), 297–306. | MR
[3] Kolář I., Michor P.W., Slovák J.: Natural Operations in Differential Geometry. Springer-Verlag, 1993. | MR
[4] Kolář I., Vosmanská G.: Natural transformations of higher order tangent bundles and jet spaces. Čas. pěst. mat. 114 (1989), 181–186. | MR
[5] Libermann P.: Introduction to the theory of semi-holonomic jets. Archivum Math. (Brno) 33 (1997), 173–189. | MR | Zbl