Some properties of Lorenzen ideal systems
Archivum mathematicum, Tome 36 (2000) no. 4, pp. 287-295 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a partially ordered abelian group ($po$-group). The construction of the Lorenzen ideal $r_a$-system in $G$ is investigated and the functorial properties of this construction with respect to the semigroup $(R(G),\oplus ,\le )$ of all $r$-ideal systems defined on $G$ are derived, where for $r,s\in R(G)$ and a lower bounded subset $X\subseteq G$, $X_{r\oplus s}=X_r\cap X_s$. It is proved that Lorenzen construction is the natural transformation between two functors from the category of $po$-groups with special morphisms into the category of abelian ordered semigroups.
Let $G$ be a partially ordered abelian group ($po$-group). The construction of the Lorenzen ideal $r_a$-system in $G$ is investigated and the functorial properties of this construction with respect to the semigroup $(R(G),\oplus ,\le )$ of all $r$-ideal systems defined on $G$ are derived, where for $r,s\in R(G)$ and a lower bounded subset $X\subseteq G$, $X_{r\oplus s}=X_r\cap X_s$. It is proved that Lorenzen construction is the natural transformation between two functors from the category of $po$-groups with special morphisms into the category of abelian ordered semigroups.
Classification : 06F05, 06F15, 06F20, 18A23
Keywords: $r$-ideal; $r_a$-system; system of finite character
@article{ARM_2000_36_4_a5,
     author = {Kalapodi, A. and Kontolatou, A. and Mo\v{c}ko\v{r}, J.},
     title = {Some properties of {Lorenzen} ideal systems},
     journal = {Archivum mathematicum},
     pages = {287--295},
     year = {2000},
     volume = {36},
     number = {4},
     mrnumber = {1811173},
     zbl = {1047.06011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a5/}
}
TY  - JOUR
AU  - Kalapodi, A.
AU  - Kontolatou, A.
AU  - Močkoř, J.
TI  - Some properties of Lorenzen ideal systems
JO  - Archivum mathematicum
PY  - 2000
SP  - 287
EP  - 295
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a5/
LA  - en
ID  - ARM_2000_36_4_a5
ER  - 
%0 Journal Article
%A Kalapodi, A.
%A Kontolatou, A.
%A Močkoř, J.
%T Some properties of Lorenzen ideal systems
%J Archivum mathematicum
%D 2000
%P 287-295
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a5/
%G en
%F ARM_2000_36_4_a5
Kalapodi, A.; Kontolatou, A.; Močkoř, J. Some properties of Lorenzen ideal systems. Archivum mathematicum, Tome 36 (2000) no. 4, pp. 287-295. http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a5/

[1] Arnold, I.: Ideale in kommutativen Halbgruppen. Rec. Math. Soc. Math. Moscow 36 (1929), 401–407.

[2] Borewicz, I. R., Shafarevicz, Z. I.: Number Theory. Academic Press, New York, 1966. | MR

[3] Clifford, A. H.: Arithmetic and ideal theory of abstract multiplication. Ann. of Math. 39 (1938), 594–610. | MR

[4] Halter-Koch, F.: Ideal systems. Marcel Dekker, Inc, New York - Basel - Hong Hong, 1998. | MR | Zbl

[5] Jaffard, P.: Les systémes d’idéaux. Dunod, Paris, 1960. | MR | Zbl

[6] Kalapodi, A. and Kontolatou, A.: Algebraic and categorical properties of $r$-ideal systems. International Journal of Mathematics and Mathematical Sciences, to appear.

[7] Lorenzen, P.: Abstrakte Begründung der multiplikativen Idealtheorie. Math. Z. 45 (1939), 533–553. | MR | Zbl

[8] Močkoř, J.: Groups of Divisibility. D. Reidl Publ. Co., Dordrecht, 1983. | MR

[9] Močkoř, J., Kontolatou, A.: Groups with quasi divisor theory. Comm. Math. Univ. St. Pauli, Tokyo 42 (1993), 23–36. | MR

[10] Skula, L.: Divisorentheorie einer Halbgruppe. Math. Z. 114 (1970), 113–120. | MR | Zbl