Three-dimensional conformally flat pseudo-symmetric spaces of constant type
Archivum mathematicum, Tome 36 (2000) no. 4, pp. 279-286 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An explicit classification of the spaces in the title is given. The resulting spaces are locally products or locally warped products of the real line and two-dimensional spaces of constant curvature.
An explicit classification of the spaces in the title is given. The resulting spaces are locally products or locally warped products of the real line and two-dimensional spaces of constant curvature.
Classification : 53C20, 53C21, 53C35
Keywords: Riemannian manifold; conformally flat space; pseudo-symmetric space; warped product
@article{ARM_2000_36_4_a4,
     author = {Hashimoto, Norio and Sekizawa, Masami},
     title = {Three-dimensional conformally flat pseudo-symmetric spaces of constant type},
     journal = {Archivum mathematicum},
     pages = {279--286},
     year = {2000},
     volume = {36},
     number = {4},
     mrnumber = {1811172},
     zbl = {1054.53060},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a4/}
}
TY  - JOUR
AU  - Hashimoto, Norio
AU  - Sekizawa, Masami
TI  - Three-dimensional conformally flat pseudo-symmetric spaces of constant type
JO  - Archivum mathematicum
PY  - 2000
SP  - 279
EP  - 286
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a4/
LA  - en
ID  - ARM_2000_36_4_a4
ER  - 
%0 Journal Article
%A Hashimoto, Norio
%A Sekizawa, Masami
%T Three-dimensional conformally flat pseudo-symmetric spaces of constant type
%J Archivum mathematicum
%D 2000
%P 279-286
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a4/
%G en
%F ARM_2000_36_4_a4
Hashimoto, Norio; Sekizawa, Masami. Three-dimensional conformally flat pseudo-symmetric spaces of constant type. Archivum mathematicum, Tome 36 (2000) no. 4, pp. 279-286. http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a4/

[1] Boeckx E., Kowalski O., Vanhecke L.: Riemannian Manifold of Conullity Two. World Scientific, Singapore, 1996. | MR

[2] Deprez J., Deszcz R., Verstraelen L.: Examples of pseudo-symmetric conformally flat warped products. Chinese J. Math 17(1989), 51–65. | MR | Zbl

[3] Deszcz R.: On pseudo-symmetric spaces. Bull. Soc. Math. Belgium, Série A. 44(1992), 1–34.

[4] Eisenhart L. P.: Riemannian Geometry. Princeton University, Sixth Printing 1966. (First Printing 1925.) | MR

[5] Hájková V.: Foliated semi-symmetric spaces in dimension 3. (in Czech), Doctoral Thesis, Prague, 1995.

[6] Kowalski O.: A classification of Riemannian 3-manifolds with constant principal Ricci curvatures $\rho _1=\rho _2\ne \rho _3$. Nagoya Math. J. 132(1993), 1–36. | MR

[7] Kowalski O.: An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$. Czechoslovak Math. J. 46(121) (1996), 427–474. (Preprint 1991). | MR | Zbl

[8] Kowalski O., Sekizawa M.: Locally isometry classes of Riemannian 3-manifolds with constant Ricci eigenvalues $\rho _1=\rho _2\ne \rho _3>0$. Arch. Math. 32(1996), 137–145. | MR

[9] Kowalski O., Sekizawa M.: Riemannian 3-manifolds with $c$-conullity two. Bollenttino, U.M.I., (7)11-B (1997), Suppl. face. 2, 161–184. | MR | Zbl

[10] Kowalski O., Sekizawa M.: Pseudo-symmetric spaces of constant type in dimension three-elliptic spaces. Rendiconti di Matematica, Serie VII, Vol.17, Roma (1997), 477–512. | MR | Zbl

[11] Kowalski O., Sekizawa M.: Pseudo-symmetric spaces of constant type in dimension three-non-elliptic spaces. Bull. Tokyo Gakugei University Sect.IV. 50(1998), 1–28. | MR | Zbl

[12] Kowalski O., Sekizawa M.: Pseudo-symmetric Spaces of Constant Type in Dimension Three. Personal Note, Charles University-Tokyo Gakugei University, Prague-Tokyo, 1998. | Zbl

[13] Mikeš J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci., New York 1996, 311–333. | MR | Zbl

[14] Milnor J.: Curvatures of left invarinat metrics on Lie groups. Adv. Math. 21(1976), 293–329. | MR

[15] O’Neill B.: Semi-Riemannian Geometry With Applications to Relativity. Academic Press, New York-London, 1983. | MR | Zbl

[16] Takagi H.: Conformally flat Riemannian manifolds admitting a transitive group of isometries. Tôhoku Math. Journ. 27(1975), 103–110. | MR | Zbl