Keywords: Riemannian manifold; conformally flat space; pseudo-symmetric space; warped product
@article{ARM_2000_36_4_a4,
author = {Hashimoto, Norio and Sekizawa, Masami},
title = {Three-dimensional conformally flat pseudo-symmetric spaces of constant type},
journal = {Archivum mathematicum},
pages = {279--286},
year = {2000},
volume = {36},
number = {4},
mrnumber = {1811172},
zbl = {1054.53060},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a4/}
}
Hashimoto, Norio; Sekizawa, Masami. Three-dimensional conformally flat pseudo-symmetric spaces of constant type. Archivum mathematicum, Tome 36 (2000) no. 4, pp. 279-286. http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a4/
[1] Boeckx E., Kowalski O., Vanhecke L.: Riemannian Manifold of Conullity Two. World Scientific, Singapore, 1996. | MR
[2] Deprez J., Deszcz R., Verstraelen L.: Examples of pseudo-symmetric conformally flat warped products. Chinese J. Math 17(1989), 51–65. | MR | Zbl
[3] Deszcz R.: On pseudo-symmetric spaces. Bull. Soc. Math. Belgium, Série A. 44(1992), 1–34.
[4] Eisenhart L. P.: Riemannian Geometry. Princeton University, Sixth Printing 1966. (First Printing 1925.) | MR
[5] Hájková V.: Foliated semi-symmetric spaces in dimension 3. (in Czech), Doctoral Thesis, Prague, 1995.
[6] Kowalski O.: A classification of Riemannian 3-manifolds with constant principal Ricci curvatures $\rho _1=\rho _2\ne \rho _3$. Nagoya Math. J. 132(1993), 1–36. | MR
[7] Kowalski O.: An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$. Czechoslovak Math. J. 46(121) (1996), 427–474. (Preprint 1991). | MR | Zbl
[8] Kowalski O., Sekizawa M.: Locally isometry classes of Riemannian 3-manifolds with constant Ricci eigenvalues $\rho _1=\rho _2\ne \rho _3>0$. Arch. Math. 32(1996), 137–145. | MR
[9] Kowalski O., Sekizawa M.: Riemannian 3-manifolds with $c$-conullity two. Bollenttino, U.M.I., (7)11-B (1997), Suppl. face. 2, 161–184. | MR | Zbl
[10] Kowalski O., Sekizawa M.: Pseudo-symmetric spaces of constant type in dimension three-elliptic spaces. Rendiconti di Matematica, Serie VII, Vol.17, Roma (1997), 477–512. | MR | Zbl
[11] Kowalski O., Sekizawa M.: Pseudo-symmetric spaces of constant type in dimension three-non-elliptic spaces. Bull. Tokyo Gakugei University Sect.IV. 50(1998), 1–28. | MR | Zbl
[12] Kowalski O., Sekizawa M.: Pseudo-symmetric Spaces of Constant Type in Dimension Three. Personal Note, Charles University-Tokyo Gakugei University, Prague-Tokyo, 1998. | Zbl
[13] Mikeš J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci., New York 1996, 311–333. | MR | Zbl
[14] Milnor J.: Curvatures of left invarinat metrics on Lie groups. Adv. Math. 21(1976), 293–329. | MR
[15] O’Neill B.: Semi-Riemannian Geometry With Applications to Relativity. Academic Press, New York-London, 1983. | MR | Zbl
[16] Takagi H.: Conformally flat Riemannian manifolds admitting a transitive group of isometries. Tôhoku Math. Journ. 27(1975), 103–110. | MR | Zbl