Three-dimensional curvature homogeneous hypersurfaces
Archivum mathematicum, Tome 36 (2000) no. 4, pp. 269-278 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is motivated by the open problem whether a three-dimensional curvature homogeneous hypersurface of a real space form is locally homogeneous or not. We give some partial positive answers.
This paper is motivated by the open problem whether a three-dimensional curvature homogeneous hypersurface of a real space form is locally homogeneous or not. We give some partial positive answers.
Classification : 53C20, 53C30, 53C40
Keywords: curvature homogeneous spaces; isoparametric hypersurfaces
@article{ARM_2000_36_4_a3,
     author = {Calvaruso, G. and Marinosci, R. A. and Perrone, D.},
     title = {Three-dimensional curvature homogeneous hypersurfaces},
     journal = {Archivum mathematicum},
     pages = {269--278},
     year = {2000},
     volume = {36},
     number = {4},
     mrnumber = {1811171},
     zbl = {1054.53070},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a3/}
}
TY  - JOUR
AU  - Calvaruso, G.
AU  - Marinosci, R. A.
AU  - Perrone, D.
TI  - Three-dimensional curvature homogeneous hypersurfaces
JO  - Archivum mathematicum
PY  - 2000
SP  - 269
EP  - 278
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a3/
LA  - en
ID  - ARM_2000_36_4_a3
ER  - 
%0 Journal Article
%A Calvaruso, G.
%A Marinosci, R. A.
%A Perrone, D.
%T Three-dimensional curvature homogeneous hypersurfaces
%J Archivum mathematicum
%D 2000
%P 269-278
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a3/
%G en
%F ARM_2000_36_4_a3
Calvaruso, G.; Marinosci, R. A.; Perrone, D. Three-dimensional curvature homogeneous hypersurfaces. Archivum mathematicum, Tome 36 (2000) no. 4, pp. 269-278. http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a3/

[1] Boeckx E., Kowalski O., Vanhecke L.,: Riemannian manifolds of conullity two. World Scientific 1996. | MR | Zbl

[2] Calvaruso G., Vanhecke L.: Special ball-homogeneous spaces. Z. Anal. Anwendungen (4) 16 (1997), 789-800. | MR | Zbl

[3] Calvaruso G., Vanhecke L.: Ball-homogeneous spaces. Proceedings of the Workshop on Differential Geometry, Santiago 89 (1998), 35-51. | Zbl

[4] Cartan E.: Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques. Math. Z. 45 (1939), 335-367. | MR | Zbl

[5] Cecil T. E., Ryan P. J.: Tight and taut immersions of manifolds. Research Notes in Math., Pitman 1985. | MR | Zbl

[6] Chang S.: A closed hypersurface with constant scalar and mean curvature in $S^4$ is isoparametric. Comm. Anal. Geom. (1) 1 (1993), 71-100. | MR

[7] Ferus D.: Notes on isoparametric hypersurfaces. Escola de Geometria Diferencial, Universidade Estadual de Campinas, 1980.

[8] Ferus D., Karcher H., Münzner H. F.: Clifford algebren und neue isoparametrische hyperflächen. Math. Z. (1981), 479-502.

[9] Kowalski O.: A classification of Riemannian $3$-manifolds with constant principal Ricci curvatures $\varrho _1 =\varrho _2 \ne \varrho _3$. Nagoya Math. J. 132 (1993), 1-36. | MR

[10] Ozeki H., Takeuchi M.: On some types of isoparametric hypersurfaces in spheres, I. Tôhoku Math. J. 27 (1975), 515-559. | MR | Zbl

[11] Ozeki H., Takeuchi M.: On some types of isoparametric hypersurfaces in spheres, I. Tôhoku Math. J. 28 (1976), 7-55. | MR

[12] Sekigawa K.: On some $3$-dimensional Riemannian manifolds. Hokkaido Math. J. 26 (1974), 259-270. | MR

[13] Singer I. M.: Infinitesimally homogeneous spaces. Comm. Pure Appl. Math. 13 (1960), 685-697. | MR | Zbl

[14] Takagi H.: On curvature homogeneity of Riemannian manifolds. Tôhoku Math. J. 26 (1974), 581-585. | MR | Zbl

[15] Tricerri F., Vanhecke L.: Cartan hypersurfaces and reflections. Nihonkai Math. J. (2) 1 (1990), 203-208. | MR | Zbl

[16] Tsukada K.: Curvature homogeneous hypersurfaces immersed in a real space form. Tôhoku Math. J. 40 (1988), 221-244. | MR | Zbl

[17] Yamada A.: Homogeneity of hypersurfaces in a sphere. Tsukuba J. Math. 22 (1) (1998), 131-143. | MR | Zbl

[18] Yamato K.: A characterization of locally homogeneous Riemann manifolds of dimension $3$. Nagoya Math. J. 123 (1991), 77-90. | MR | Zbl