The natural affinors on $(J^rT^*)^*$
Archivum mathematicum, Tome 36 (2000) no. 4, pp. 261-267 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For natural numbers $r$ and $n\ge 2$ a complete classification of natural affinors on the natural bundle $(J^rT^*)^*$ dual to $r$-jet prolongation $J^rT^*$ of the cotangent bundle over $n$-manifolds is given.
For natural numbers $r$ and $n\ge 2$ a complete classification of natural affinors on the natural bundle $(J^rT^*)^*$ dual to $r$-jet prolongation $J^rT^*$ of the cotangent bundle over $n$-manifolds is given.
Classification : 53A55, 58A20, 58A32
Keywords: bundle functors; natural transformations; natural affinors
@article{ARM_2000_36_4_a2,
     author = {Mikulski, W{\l}odzimierz M.},
     title = {The natural affinors on $(J^rT^*)^*$},
     journal = {Archivum mathematicum},
     pages = {261--267},
     year = {2000},
     volume = {36},
     number = {4},
     mrnumber = {1811170},
     zbl = {1049.58012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a2/}
}
TY  - JOUR
AU  - Mikulski, Włodzimierz M.
TI  - The natural affinors on $(J^rT^*)^*$
JO  - Archivum mathematicum
PY  - 2000
SP  - 261
EP  - 267
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a2/
LA  - en
ID  - ARM_2000_36_4_a2
ER  - 
%0 Journal Article
%A Mikulski, Włodzimierz M.
%T The natural affinors on $(J^rT^*)^*$
%J Archivum mathematicum
%D 2000
%P 261-267
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a2/
%G en
%F ARM_2000_36_4_a2
Mikulski, Włodzimierz M. The natural affinors on $(J^rT^*)^*$. Archivum mathematicum, Tome 36 (2000) no. 4, pp. 261-267. http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a2/

[1] Doupovec, M.: Natural transformations between $TTT^*M$ and $TT^*TM$. Czechoslovak Math. J. 43 (118) 1993, 599–613. | MR | Zbl

[2] Doupovec, M., Kolář, I.: Natural affinors on time-dependent Weil bundles. Arch. Math. (Brno) 27 (1991), 205–209. | MR

[3] Gancarzewicz, J., Kolář, I.: Natural affinors on the extended $r$-th order tangent bundles. Suppl. Rendiconti Circolo Mat. Palermo, 30 (1993), 95–100. | MR

[4] Kolář I., Michor P. W., Slovák J.: Natural operations in differential geometry. Springer-Verlag, Berlin 1993. | MR

[5] Kolář, I., Modugno, M.: Torsions of connections on some natural bundles. Diff. Geom. and Appl. 2(1992), 1–16. | MR

[6] Kurek, J.: Natural affinors on higher order cotangent bundles. Arch. Math. (Brno) 28 (1992), 175–180. | MR

[7] Mikulski, W. M.: Natural affinors on $r$-jet prolongation of the tangent bundle. Arch. Math. (Brno) 34(2)(1998), 321–328. | MR | Zbl

[8] Mikulski, W. M.: The natural affinors on $\otimes ^k T^{(r)}$. Note di Matematica, to appear.

[9] Zajtz, A.: On the order of natural operators and liftings. Ann. Polon. Math. 49(1988), 169–178. | MR