Derivation of the Reynolds equation for lubrication of a rotating shaft
Archivum mathematicum, Tome 36 (2000) no. 4, pp. 239-253 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, using the asymptotic expansion, we prove that the Reynolds lubrication equation is an approximation of the full Navier–Stokes equations in thin gap between two coaxial cylinders in relative motion. Boundary layer correctors are computed. The error estimate in terms of domain thickness for the asymptotic expansion is given. The corrector for classical Reynolds approximation is computed.
In this paper, using the asymptotic expansion, we prove that the Reynolds lubrication equation is an approximation of the full Navier–Stokes equations in thin gap between two coaxial cylinders in relative motion. Boundary layer correctors are computed. The error estimate in terms of domain thickness for the asymptotic expansion is given. The corrector for classical Reynolds approximation is computed.
Classification : 35B25, 35B40, 35Q30, 76D08
Keywords: lubrication; Reynolds equation; Navier-Stokes system; lower-dimensional approximation
@article{ARM_2000_36_4_a0,
     author = {Duvnjak, Antonija and Maru\v{s}i\'c-Paloka, Eduard},
     title = {Derivation of the {Reynolds} equation for lubrication of a rotating shaft},
     journal = {Archivum mathematicum},
     pages = {239--253},
     year = {2000},
     volume = {36},
     number = {4},
     mrnumber = {1811168},
     zbl = {1046.35006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a0/}
}
TY  - JOUR
AU  - Duvnjak, Antonija
AU  - Marušić-Paloka, Eduard
TI  - Derivation of the Reynolds equation for lubrication of a rotating shaft
JO  - Archivum mathematicum
PY  - 2000
SP  - 239
EP  - 253
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a0/
LA  - en
ID  - ARM_2000_36_4_a0
ER  - 
%0 Journal Article
%A Duvnjak, Antonija
%A Marušić-Paloka, Eduard
%T Derivation of the Reynolds equation for lubrication of a rotating shaft
%J Archivum mathematicum
%D 2000
%P 239-253
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a0/
%G en
%F ARM_2000_36_4_a0
Duvnjak, Antonija; Marušić-Paloka, Eduard. Derivation of the Reynolds equation for lubrication of a rotating shaft. Archivum mathematicum, Tome 36 (2000) no. 4, pp. 239-253. http://geodesic.mathdoc.fr/item/ARM_2000_36_4_a0/

[1] Assemien A., Bayada G., Chambat M.: Inertial Effects in the Asymptotic Behavior of a Thin Film Flow. Asymptotic.Anal., 9(1994), 177–208. | MR | Zbl

[2] Bayada G., Chambat M.: The Transition Between the Stokes Equations and the Reynolds Equation: A Mathematical Proof. Appl. Math. Optim., 14 (1986), 73–93. | MR | Zbl

[3] Bourgeat A., Marušić-Paloka E.: Loi d’écoulement non linéaire entre deux plaques ondulées. C.R.Acad.Sci.Paris, Série I , t.321 (1995), 1115–1120. | MR | Zbl

[4] Bourgeat A., Marušić-Paloka E.: Nonlinear Effects for Flow in Periodically Constricted Channel Caused by High Injection Rate. Math.Models Methods Appl.Sci., Vol 8, No 3 (1998), 379–405. | MR | Zbl

[5] Capriz G.: On the Vibrations of Shaft Rotating on Lubricated Bearings. Ann. Math. Pure. Appl., 50(1960), 223–248. | MR

[6] Cimatti G.: A Rigorous Justification of the Reynolds Equation. Quart. Appl. Math., XLV (4) (1987), 627–644. | MR | Zbl

[7] Elrod H. G.: A Derivation of the Basic Equations for Hydrodynamics Lubrication with a Fluid Having Constant Properties. Quart. Appl. Math. 27 (1960), 349–385. | MR

[8] Galdi G. P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, I, II. Springer–Verlag, Berlin, 1994. | MR

[9] Iosifyan G. A., Oleinik O. A.: O povedenii na beskonečnosti rešenij elliptičeskih uravnenij vtorogo porjadka v oblastjah s nekompaktnoj granicej. Mat. Sb., 112, 4(8) (1980), 588–610. | MR

[10] Hughes T. J. R., Marsden J. E.: A Short Course in Fluid Mechanics. Publish or Perish, Boston, 1976. | MR | Zbl

[11] Marušić-Paloka E.: The Effects of Torsion and Flexion for a Fluid Flow Through a Curved Pipe. to appear in Appl. Math. Optim. | MR

[12] Nazarov S.A.: Asymptotic solution of the Navier-Stokes problem on the flow of a thin layer of fluid. Siberian Math.J., 31 (1990) 2, 296–307. | MR | Zbl

[13] Reynolds O.: On the Theory of Lubrication and its Application to Beauchamp Tower’s Experiment. Phil. Trans. Roy. Soc. London, A 117 (1886), 157–234.

[14] Wannier G. H.: A Contribution to the Hydrodynamics of Lubrication. Quart. Appl. Math., 8 (1950), 1–32. | MR | Zbl