Some $\lambda $-sequence spaces defined by a modulus
Archivum mathematicum, Tome 36 (2000) no. 3, pp. 219-228 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The main object of this paper is to introduce and study some sequence spaces which arise from the notation of generalized de la Vallée–Poussin means and the concept of a modulus function.
The main object of this paper is to introduce and study some sequence spaces which arise from the notation of generalized de la Vallée–Poussin means and the concept of a modulus function.
Classification : 40H05, 46A45, 47B07
Keywords: FK; AK spaces; paranorm; modulus functions; almost convergence; statistical convergence; de la Vallée–Poussin means
@article{ARM_2000_36_3_a7,
     author = {Malkowsky, Eberhard and Savas, Ekrem},
     title = {Some $\lambda $-sequence spaces defined by a modulus},
     journal = {Archivum mathematicum},
     pages = {219--228},
     year = {2000},
     volume = {36},
     number = {3},
     mrnumber = {1785040},
     zbl = {1046.40011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a7/}
}
TY  - JOUR
AU  - Malkowsky, Eberhard
AU  - Savas, Ekrem
TI  - Some $\lambda $-sequence spaces defined by a modulus
JO  - Archivum mathematicum
PY  - 2000
SP  - 219
EP  - 228
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a7/
LA  - en
ID  - ARM_2000_36_3_a7
ER  - 
%0 Journal Article
%A Malkowsky, Eberhard
%A Savas, Ekrem
%T Some $\lambda $-sequence spaces defined by a modulus
%J Archivum mathematicum
%D 2000
%P 219-228
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a7/
%G en
%F ARM_2000_36_3_a7
Malkowsky, Eberhard; Savas, Ekrem. Some $\lambda $-sequence spaces defined by a modulus. Archivum mathematicum, Tome 36 (2000) no. 3, pp. 219-228. http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a7/

[1] P. Erdös, Tenenbaum: Sur les densities des certaines suites d’entiers. Proc. London Math. Soc (3), 59, (1989), 417–438 | MR

[2] H. Fast: Sur la convergence statistique. Colloq. Math. 2, (1951), 241–244 | MR | Zbl

[3] I. J. Maddox: On Kuttner’s theorem. J. London Math. Soc. 43, (1968), 285–290 | MR | Zbl

[4] I. J. Maddox: On strong almost convergence. Math. Proc. Camb. Phil. Soc. 85, (1979), 345–350 | MR | Zbl

[5] I. J. Maddox: Sequence spaces defined by a modulus. Math. Proc. Camb. Phil. Soc., 100, (1986), 161–166 | MR | Zbl

[6] I. J. Maddox: Inclusions between FK–spaces and Kuttner’s theorem. Math. Proc. Camb. Phil. Soc., 101, (1987), 523–527 | MR | Zbl

[7] Nakano H.: Concave modulus. J. Math. Soc. Japon. 5, (1953), 29-49. | MR

[8] W. H. Ruckle: FK spaces in which the sequence of coordinate vectors is bounded. Canad. J. Math., 25, (1973), 973–978 | MR | Zbl

[9] E. Savas: On some generalized sequence spaces defined by a modulus. Indian J. Pure appl. Math., 30(5), (1999), 459–464 | MR | Zbl

[10] E. Savas: Strong almost convergence and almost $\lambda $–statistical convergence. Hokkaido J. Math. (to appear) | MR | Zbl

[11] A. Wilansky: Functional Analysis. Blaisdell Publishing Company, 1964 | MR | Zbl

[12] A. Wilansky: Summability through Functional Analysis. North–Holland Mathematical Studies 85, 1984 | MR | Zbl

[13] A. Zygmund: Trigonometric Series. Second Edition, Cambridge University Press (1979)