Keywords: FK; AK spaces; paranorm; modulus functions; almost convergence; statistical convergence; de la Vallée–Poussin means
@article{ARM_2000_36_3_a7,
author = {Malkowsky, Eberhard and Savas, Ekrem},
title = {Some $\lambda $-sequence spaces defined by a modulus},
journal = {Archivum mathematicum},
pages = {219--228},
year = {2000},
volume = {36},
number = {3},
mrnumber = {1785040},
zbl = {1046.40011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a7/}
}
Malkowsky, Eberhard; Savas, Ekrem. Some $\lambda $-sequence spaces defined by a modulus. Archivum mathematicum, Tome 36 (2000) no. 3, pp. 219-228. http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a7/
[1] P. Erdös, Tenenbaum: Sur les densities des certaines suites d’entiers. Proc. London Math. Soc (3), 59, (1989), 417–438 | MR
[2] H. Fast: Sur la convergence statistique. Colloq. Math. 2, (1951), 241–244 | MR | Zbl
[3] I. J. Maddox: On Kuttner’s theorem. J. London Math. Soc. 43, (1968), 285–290 | MR | Zbl
[4] I. J. Maddox: On strong almost convergence. Math. Proc. Camb. Phil. Soc. 85, (1979), 345–350 | MR | Zbl
[5] I. J. Maddox: Sequence spaces defined by a modulus. Math. Proc. Camb. Phil. Soc., 100, (1986), 161–166 | MR | Zbl
[6] I. J. Maddox: Inclusions between FK–spaces and Kuttner’s theorem. Math. Proc. Camb. Phil. Soc., 101, (1987), 523–527 | MR | Zbl
[7] Nakano H.: Concave modulus. J. Math. Soc. Japon. 5, (1953), 29-49. | MR
[8] W. H. Ruckle: FK spaces in which the sequence of coordinate vectors is bounded. Canad. J. Math., 25, (1973), 973–978 | MR | Zbl
[9] E. Savas: On some generalized sequence spaces defined by a modulus. Indian J. Pure appl. Math., 30(5), (1999), 459–464 | MR | Zbl
[10] E. Savas: Strong almost convergence and almost $\lambda $–statistical convergence. Hokkaido J. Math. (to appear) | MR | Zbl
[11] A. Wilansky: Functional Analysis. Blaisdell Publishing Company, 1964 | MR | Zbl
[12] A. Wilansky: Summability through Functional Analysis. North–Holland Mathematical Studies 85, 1984 | MR | Zbl
[13] A. Zygmund: Trigonometric Series. Second Edition, Cambridge University Press (1979)