Keywords: complex Liouville-Green; WKB; asymptotic approximations
@article{ARM_2000_36_3_a6,
author = {Spigler, Renato and Vianello, Marco},
title = {A variant of the complex {Liouville-Green} approximation theorem},
journal = {Archivum mathematicum},
pages = {213--218},
year = {2000},
volume = {36},
number = {3},
mrnumber = {1785039},
zbl = {1058.34128},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a6/}
}
Spigler, Renato; Vianello, Marco. A variant of the complex Liouville-Green approximation theorem. Archivum mathematicum, Tome 36 (2000) no. 3, pp. 213-218. http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a6/
[1] Olver F. W. J.: Asymptotics and Special Functions. Academic Press, New York, 1974; reprinted by A. K. Peters, Wellesley, MA, 1997. | MR | Zbl
[2] Spigler R., Vianello M.: A numerical method for evaluating zeros of solutions of second-order linear differential equations. Math. Comp. 55 (1990), 591–612. | MR | Zbl
[3] Spigler R., Vianello M.: On the complex differential equation $Y^{\prime \prime }+G(z)Y=0$ in Banach algebras. Stud. Appl. Math. 102 (1999), 291–308. | MR | Zbl
[4] Thorne R. C.: Asymptotic formulae for solutions of second-order differential equations with a large parameter. J. Austral. Math. Soc. 1 (1960), 439–464. | MR
[5] Vianello M.: Extensions and numerical applications of the Liouville-Green approximation. Ph. D. Thesis (in Italian), University of Padova, 1992 (advisor: R. Spigler).