A variant of the complex Liouville-Green approximation theorem
Archivum mathematicum, Tome 36 (2000) no. 3, pp. 213-218 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We propose a variant of the classical Liouville-Green approximation theorem for linear complex differential equations of the second order. We obtain rigorous error bounds for the asymptotics at infinity, in the spirit of F. W. J. Olver’s formulation, by using rather arbitrary $\xi $-progressive paths. This approach can provide higher flexibility in practical applications of the method.
We propose a variant of the classical Liouville-Green approximation theorem for linear complex differential equations of the second order. We obtain rigorous error bounds for the asymptotics at infinity, in the spirit of F. W. J. Olver’s formulation, by using rather arbitrary $\xi $-progressive paths. This approach can provide higher flexibility in practical applications of the method.
Classification : 34E20, 34M35, 34M60
Keywords: complex Liouville-Green; WKB; asymptotic approximations
@article{ARM_2000_36_3_a6,
     author = {Spigler, Renato and Vianello, Marco},
     title = {A variant of the complex {Liouville-Green} approximation theorem},
     journal = {Archivum mathematicum},
     pages = {213--218},
     year = {2000},
     volume = {36},
     number = {3},
     mrnumber = {1785039},
     zbl = {1058.34128},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a6/}
}
TY  - JOUR
AU  - Spigler, Renato
AU  - Vianello, Marco
TI  - A variant of the complex Liouville-Green approximation theorem
JO  - Archivum mathematicum
PY  - 2000
SP  - 213
EP  - 218
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a6/
LA  - en
ID  - ARM_2000_36_3_a6
ER  - 
%0 Journal Article
%A Spigler, Renato
%A Vianello, Marco
%T A variant of the complex Liouville-Green approximation theorem
%J Archivum mathematicum
%D 2000
%P 213-218
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a6/
%G en
%F ARM_2000_36_3_a6
Spigler, Renato; Vianello, Marco. A variant of the complex Liouville-Green approximation theorem. Archivum mathematicum, Tome 36 (2000) no. 3, pp. 213-218. http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a6/

[1] Olver F. W. J.: Asymptotics and Special Functions. Academic Press, New York, 1974; reprinted by A. K. Peters, Wellesley, MA, 1997. | MR | Zbl

[2] Spigler R., Vianello M.: A numerical method for evaluating zeros of solutions of second-order linear differential equations. Math. Comp. 55 (1990), 591–612. | MR | Zbl

[3] Spigler R., Vianello M.: On the complex differential equation $Y^{\prime \prime }+G(z)Y=0$ in Banach algebras. Stud. Appl. Math. 102 (1999), 291–308. | MR | Zbl

[4] Thorne R. C.: Asymptotic formulae for solutions of second-order differential equations with a large parameter. J. Austral. Math. Soc. 1 (1960), 439–464. | MR

[5] Vianello M.: Extensions and numerical applications of the Liouville-Green approximation. Ph. D. Thesis (in Italian), University of Padova, 1992 (advisor: R. Spigler).