The natural operators lifting vector fields to generalized higher order tangent bundles
Archivum mathematicum, Tome 36 (2000) no. 3, pp. 207-212
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
For natural numbers $r$ and $n$ and a real number $a$ we construct a natural vector bundle $T^{(r),a}$ over $n$-manifolds such that $T^{(r),0}$ is the (classical) vector tangent bundle $T^{(r)}$ of order $r$. For integers $r\ge 1$ and $n\ge 3$ and a real number $a0$ we classify all natural operators $T_{\vert M_n}\rightsquigarrow TT^{(r),a}$ lifting vector fields from $n$-manifolds to $T^{(r),a}$.
For natural numbers $r$ and $n$ and a real number $a$ we construct a natural vector bundle $T^{(r),a}$ over $n$-manifolds such that $T^{(r),0}$ is the (classical) vector tangent bundle $T^{(r)}$ of order $r$. For integers $r\ge 1$ and $n\ge 3$ and a real number $a0$ we classify all natural operators $T_{\vert M_n}\rightsquigarrow TT^{(r),a}$ lifting vector fields from $n$-manifolds to $T^{(r),a}$.
Classification :
53A55, 58A20, 58A32
Keywords: natural bundle; natural transformation; natural operator
Keywords: natural bundle; natural transformation; natural operator
@article{ARM_2000_36_3_a5,
author = {Mikulski, W{\l}odzimierz M.},
title = {The natural operators lifting vector fields to generalized higher order tangent bundles},
journal = {Archivum mathematicum},
pages = {207--212},
year = {2000},
volume = {36},
number = {3},
mrnumber = {1785038},
zbl = {1049.58010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a5/}
}
Mikulski, Włodzimierz M. The natural operators lifting vector fields to generalized higher order tangent bundles. Archivum mathematicum, Tome 36 (2000) no. 3, pp. 207-212. http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a5/