On Lie ideals and Jordan left derivations of prime rings
Archivum mathematicum, Tome 36 (2000) no. 3, pp. 201-206 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a 2-torsion free prime ring and let $U$ be a Lie ideal of $R$ such that $u^{2} \in U$ for all $u \in U$. In the present paper it is shown that if $d$ is an additive mappings of $R$ into itself satisfying $d(u^{2})=2ud(u)$ for all $u \in U$, then $d(uv)=ud(v)+vd(u)$ for all $u,v \in U$.
Let $R$ be a 2-torsion free prime ring and let $U$ be a Lie ideal of $R$ such that $u^{2} \in U$ for all $u \in U$. In the present paper it is shown that if $d$ is an additive mappings of $R$ into itself satisfying $d(u^{2})=2ud(u)$ for all $u \in U$, then $d(uv)=ud(v)+vd(u)$ for all $u,v \in U$.
Classification : 16N60, 16W10, 16W25
Keywords: Lie ideals; prime rings; Jordan left derivations; left derivations; torsion free rings
@article{ARM_2000_36_3_a4,
     author = {Ashraf, Mohammad and Nadeem-ur-Rehman},
     title = {On {Lie} ideals and {Jordan} left derivations of prime rings},
     journal = {Archivum mathematicum},
     pages = {201--206},
     year = {2000},
     volume = {36},
     number = {3},
     mrnumber = {1785037},
     zbl = {1030.16018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a4/}
}
TY  - JOUR
AU  - Ashraf, Mohammad
AU  - Nadeem-ur-Rehman
TI  - On Lie ideals and Jordan left derivations of prime rings
JO  - Archivum mathematicum
PY  - 2000
SP  - 201
EP  - 206
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a4/
LA  - en
ID  - ARM_2000_36_3_a4
ER  - 
%0 Journal Article
%A Ashraf, Mohammad
%A Nadeem-ur-Rehman
%T On Lie ideals and Jordan left derivations of prime rings
%J Archivum mathematicum
%D 2000
%P 201-206
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a4/
%G en
%F ARM_2000_36_3_a4
Ashraf, Mohammad; Nadeem-ur-Rehman. On Lie ideals and Jordan left derivations of prime rings. Archivum mathematicum, Tome 36 (2000) no. 3, pp. 201-206. http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a4/

[1] Awtar R.: Lie ideals and Jordan derivations of prime rings. Proc. Amer. Math. Soc. 90 (1984), 9–14. | MR | Zbl

[2] Bergen J., Herstein I. N., Ker J. W.: Lie ideals and derivations of prime rings . J. Algebra 71 (1981), 259–267. | MR

[3] Bresar M.: Jordan derivations on semiprime rings. Proc. Amer. Math. Soc. 104 (1988), 1003–1006. | MR | Zbl

[4] Bresar M., Vukman J.: Jordan derivations of prime rings. Bull. Aust. Math. Soc. 37 (1988), 321–322. | MR

[5] Bresar M., Vukman J.: On left derivations and related mappings. Proc. Amer. Math. Soc. 110 (1990), 7–16. | MR | Zbl

[6] Deng Q.: On Jordan left derivations. Math. J. Okayama Univ. 34 (1992), 145–147. | MR | Zbl

[7] Herstein I. N.: Jordan derivations of prime rings. Proc. Amer. Math. Soc. 8 (1957), 1104–1110. | MR

[8] Herstein I. N.: Topics in ring theory. Univ. of Chcago Press, Chicago 1969. | MR | Zbl

[9] Kill-Wong Jun, Byung-Do Kim: A note on Jordan left derivations. Bull. Korean Math. Soc. 33 (1996) No. 2, 221–228. | MR

[10] Posner E. C.: Derivations in prime rings. Proc. Amer. Math. Soc. 8 (1957), 1093–1100. | MR

[11] Vukman J.: Jordan left derivations on semiprime rings. Math. J. Okayama Univ. (to appear). | MR | Zbl