Jet manifold associated to a Weil bundle
Archivum mathematicum, Tome 36 (2000) no. 3, pp. 195-199
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Given a Weil algebra $A$ and a smooth manifold $M$, we prove that the set $J^AM$ of kernels of regular $A$-points of $M$, $\check{M}^A$, has a differentiable manifold structure and $\check{M}^A\longrightarrow J^AM$ is a principal fiber bundle.
Given a Weil algebra $A$ and a smooth manifold $M$, we prove that the set $J^AM$ of kernels of regular $A$-points of $M$, $\check{M}^A$, has a differentiable manifold structure and $\check{M}^A\longrightarrow J^AM$ is a principal fiber bundle.
@article{ARM_2000_36_3_a3,
author = {Alonso, Ricardo J.},
title = {Jet manifold associated to a {Weil} bundle},
journal = {Archivum mathematicum},
pages = {195--199},
year = {2000},
volume = {36},
number = {3},
mrnumber = {1785036},
zbl = {1049.58007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a3/}
}
Alonso, Ricardo J. Jet manifold associated to a Weil bundle. Archivum mathematicum, Tome 36 (2000) no. 3, pp. 195-199. http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a3/
[1] Kolář I.: Affine structure on Weil bundles. To appear in Nagoya Math J. | MR | Zbl
[2] Kolář I., Michor P. W., Slovák J.: Natural operations in differential geometry. Springer-Verlag, New York, 1993. | MR | Zbl
[3] Muñoz, J, Muriel F. J., and Rodríguez J.: Weil bundles and jet spaces. To appear in Czech. Math. J.
[4] Weil A.: Théorie des points proches sur les variétés différentiables. Colloque de Géometrie Différentielle, C.N.R.S. (1953), 111–117. | MR | Zbl