Keywords: biased map; compatible map; fixed point; normed space
@article{ARM_2000_36_3_a2,
author = {Shahzad, Naseer and Sahar, Salma},
title = {Some common fixed point theorems for biased mappings},
journal = {Archivum mathematicum},
pages = {183--194},
year = {2000},
volume = {36},
number = {3},
mrnumber = {1785035},
zbl = {1048.47044},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a2/}
}
Shahzad, Naseer; Sahar, Salma. Some common fixed point theorems for biased mappings. Archivum mathematicum, Tome 36 (2000) no. 3, pp. 183-194. http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a2/
[1] Kaneko, H. and Sessa, S.: Fixed point theorems for compatible multivalued and single valued mappings. Internat. J. Math. and Math. Sci. 12 (1989), 257–269. | MR
[2] Jungck, G.: Compatible mappings and common fixed points. Internat. J. Math. and Math. Sci. 9 (1989), 771–779. | MR | Zbl
[3] Jungck, G.: Common fixed points of commuting and compatible maps on compacta. Proc. Amer. Math. Soc. 103 (1988), 977–983. | MR
[4] Jungck, G., Murthy, P. P. and Cho, Y. J.: Compatible mappings of type $(A)$ and common fixed points. Math. Japonica 38(2) (1993), 381–390. | MR
[5] Jungck, G. and Pathak, H. K.: Fixed points via “biased maps". Proc. Amer. Math. Soc. 123 (1995), 2049–2060. | MR
[6] Pathak, H. K. and Fisher, B.: A common fixed point theorem for compatible mappings on normed vector space. Arch. Math.(Brno) 33 (1997), 245–251. | MR
[7] Pathak, H. K., Kang, S. M. and Cho, Y. J.: Gregus type common fixed point theorems for compatible mappings of type $(T)$ and variational inequalities. Publ. Math. Debrecen 46 (1995), 285–299. | MR
[8] Pathak, H. K. and Khan, M. S.: Compatible mappings of type $(B)$ and common fixed point theorems of Gregus type. Czechoslovak Math. J. 45(120) (1995), 685–698. | MR