An existence result for first order initial value problems for impulsive differential inclusions in Banach spaces
Archivum mathematicum, Tome 36 (2000) no. 3, pp. 159-169
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, a nonlinear alternative for multivalued maps is used to investigate the existence of solutions of first order impulsive initial value problem for differential inclusions in Banach spaces.
In this paper, a nonlinear alternative for multivalued maps is used to investigate the existence of solutions of first order impulsive initial value problem for differential inclusions in Banach spaces.
Classification : 34A37, 34A60, 34G25
Keywords: impulsive initial value problem; multivalued map; a priori bounds; existence; fixed point
@article{ARM_2000_36_3_a0,
     author = {Benchohra, Mouffak and Boucherif, Abdelkader},
     title = {An existence result for first order initial value problems for impulsive differential inclusions in {Banach} spaces},
     journal = {Archivum mathematicum},
     pages = {159--169},
     year = {2000},
     volume = {36},
     number = {3},
     mrnumber = {1785033},
     zbl = {1054.34099},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a0/}
}
TY  - JOUR
AU  - Benchohra, Mouffak
AU  - Boucherif, Abdelkader
TI  - An existence result for first order initial value problems for impulsive differential inclusions in Banach spaces
JO  - Archivum mathematicum
PY  - 2000
SP  - 159
EP  - 169
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a0/
LA  - en
ID  - ARM_2000_36_3_a0
ER  - 
%0 Journal Article
%A Benchohra, Mouffak
%A Boucherif, Abdelkader
%T An existence result for first order initial value problems for impulsive differential inclusions in Banach spaces
%J Archivum mathematicum
%D 2000
%P 159-169
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a0/
%G en
%F ARM_2000_36_3_a0
Benchohra, Mouffak; Boucherif, Abdelkader. An existence result for first order initial value problems for impulsive differential inclusions in Banach spaces. Archivum mathematicum, Tome 36 (2000) no. 3, pp. 159-169. http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a0/

[1] Aubin J. P., Cellina A.: Differential Inclusions. Springer-Verlag, Berlin-Heidelberg, 1984. | MR | Zbl

[2] Bainov D. D., Simeonov P. S.: Systems with Impulse Effect. Ellis Horwood Ltd., Chichister, 1989. | MR | Zbl

[3] Benchohra M.: Existence of solutions for differential inclusions in Banach space. Commun. Appl. Anal. 4 (1) (2000), 71–77. | MR | Zbl

[4] Benchohra M., Boucherif A.: On first order initial value problems for impulsive differential inclusions in Banach Spaces. Dynam. Syst. Appl. 8 (1) (1999), 119–126. | MR | Zbl

[5] Deimling K.: Multivalued Differential Equations. Walter De Gruyter, Berlin-New York, 1992. | MR | Zbl

[6] Erbe L., Krawcewicz W.: Existence of solutions to boundary value problems for impulsive second order differential inclusions. Rockey Mountain J. Math. 22 (1992), 519–539. | MR | Zbl

[7] Frigon M., O’Regan D.: Existence results for first order impulsive differential equations. J. Math. Anal. Appl. 193 (1995), 96–113. | MR

[8] Frigon M., O’Regan D.,: Boundary value problems for second order impulsive differential equations using set-valued maps. Rapport DMS-357, University of Montreal, 1993.

[9] Frigon M.: Application de la théorie de la transversalité topologique à des problèmes non linéaires pour des équations différentielles ordinaires. Dissertationes Math. 296 (1990), 1–79. | MR | Zbl

[10] Lakshmikantham V., Bainov D. D., Simeonov P. S.: Theory of Impulsive Differential Equations. World Scientific, Singapore, 1989. | MR | Zbl

[11] Lasota A., Opial Z.: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–786. | MR | Zbl

[12] Liu X.: Nonlinear boundary value problems for first order impulsive differential equations. Appl. Anal. 36 (1990), 119–130. | MR

[13] Liz E.: Boundary Value Problems for New Types of Differential Equations. Ph.D. Thesis, Univ. Santiago de Compostela, 1994 (in Spanish).

[14] Liz E., Nieto J. J.: Positive solutions of linear impulsive differential equations. Commun. Appl. Anal. 2 (4) (1998), 565–571. | MR | Zbl

[15] O’Regan D.: Fixed point theory for the sum of two operators. Appl. Math. Lett. 9 (1) (1996), 1–8. | Zbl

[16] Pierson-Gorez C.: Problèmes aux Limites Pour des Equations Différentielles avec Impulsions. Ph.D. Thesis, Univ. Louvain-la-Neuve, 1993 (in French).

[17] Samoilenko A. M., Perestyuk N. A.: Impulsive Differential Equations. World Scientific, Singapore, 1995. | MR | Zbl

[18] Silva G. N., Vinter R. B.: Measure driven differential inclusions. J. Math. Anal. Appl. 202 (1996), 727–746. | MR | Zbl

[19] Stewart D. E.: Existence of solutions to rigid body dynamics and the Painleve paradoxes. C. R. Acad. Sci. Paris Ser. I Math. 325 (1997), 689–693. | MR | Zbl

[20] Yosida K.: Functional Analysis. $6^{\text{th}}$ edn. Springer-Verlag, Berlin, 1980. | MR | Zbl

[21] Yujun D., Erxin Z.: An application of coincidence degree continuation theorem in existence of solutions of impulsive differential equations. J. Math. Anal. Appl. 197 (1996), 875–889. | MR