Keywords: impulsive initial value problem; multivalued map; a priori bounds; existence; fixed point
@article{ARM_2000_36_3_a0,
author = {Benchohra, Mouffak and Boucherif, Abdelkader},
title = {An existence result for first order initial value problems for impulsive differential inclusions in {Banach} spaces},
journal = {Archivum mathematicum},
pages = {159--169},
year = {2000},
volume = {36},
number = {3},
mrnumber = {1785033},
zbl = {1054.34099},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a0/}
}
TY - JOUR AU - Benchohra, Mouffak AU - Boucherif, Abdelkader TI - An existence result for first order initial value problems for impulsive differential inclusions in Banach spaces JO - Archivum mathematicum PY - 2000 SP - 159 EP - 169 VL - 36 IS - 3 UR - http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a0/ LA - en ID - ARM_2000_36_3_a0 ER -
%0 Journal Article %A Benchohra, Mouffak %A Boucherif, Abdelkader %T An existence result for first order initial value problems for impulsive differential inclusions in Banach spaces %J Archivum mathematicum %D 2000 %P 159-169 %V 36 %N 3 %U http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a0/ %G en %F ARM_2000_36_3_a0
Benchohra, Mouffak; Boucherif, Abdelkader. An existence result for first order initial value problems for impulsive differential inclusions in Banach spaces. Archivum mathematicum, Tome 36 (2000) no. 3, pp. 159-169. http://geodesic.mathdoc.fr/item/ARM_2000_36_3_a0/
[1] Aubin J. P., Cellina A.: Differential Inclusions. Springer-Verlag, Berlin-Heidelberg, 1984. | MR | Zbl
[2] Bainov D. D., Simeonov P. S.: Systems with Impulse Effect. Ellis Horwood Ltd., Chichister, 1989. | MR | Zbl
[3] Benchohra M.: Existence of solutions for differential inclusions in Banach space. Commun. Appl. Anal. 4 (1) (2000), 71–77. | MR | Zbl
[4] Benchohra M., Boucherif A.: On first order initial value problems for impulsive differential inclusions in Banach Spaces. Dynam. Syst. Appl. 8 (1) (1999), 119–126. | MR | Zbl
[5] Deimling K.: Multivalued Differential Equations. Walter De Gruyter, Berlin-New York, 1992. | MR | Zbl
[6] Erbe L., Krawcewicz W.: Existence of solutions to boundary value problems for impulsive second order differential inclusions. Rockey Mountain J. Math. 22 (1992), 519–539. | MR | Zbl
[7] Frigon M., O’Regan D.: Existence results for first order impulsive differential equations. J. Math. Anal. Appl. 193 (1995), 96–113. | MR
[8] Frigon M., O’Regan D.,: Boundary value problems for second order impulsive differential equations using set-valued maps. Rapport DMS-357, University of Montreal, 1993.
[9] Frigon M.: Application de la théorie de la transversalité topologique à des problèmes non linéaires pour des équations différentielles ordinaires. Dissertationes Math. 296 (1990), 1–79. | MR | Zbl
[10] Lakshmikantham V., Bainov D. D., Simeonov P. S.: Theory of Impulsive Differential Equations. World Scientific, Singapore, 1989. | MR | Zbl
[11] Lasota A., Opial Z.: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–786. | MR | Zbl
[12] Liu X.: Nonlinear boundary value problems for first order impulsive differential equations. Appl. Anal. 36 (1990), 119–130. | MR
[13] Liz E.: Boundary Value Problems for New Types of Differential Equations. Ph.D. Thesis, Univ. Santiago de Compostela, 1994 (in Spanish).
[14] Liz E., Nieto J. J.: Positive solutions of linear impulsive differential equations. Commun. Appl. Anal. 2 (4) (1998), 565–571. | MR | Zbl
[15] O’Regan D.: Fixed point theory for the sum of two operators. Appl. Math. Lett. 9 (1) (1996), 1–8. | Zbl
[16] Pierson-Gorez C.: Problèmes aux Limites Pour des Equations Différentielles avec Impulsions. Ph.D. Thesis, Univ. Louvain-la-Neuve, 1993 (in French).
[17] Samoilenko A. M., Perestyuk N. A.: Impulsive Differential Equations. World Scientific, Singapore, 1995. | MR | Zbl
[18] Silva G. N., Vinter R. B.: Measure driven differential inclusions. J. Math. Anal. Appl. 202 (1996), 727–746. | MR | Zbl
[19] Stewart D. E.: Existence of solutions to rigid body dynamics and the Painleve paradoxes. C. R. Acad. Sci. Paris Ser. I Math. 325 (1997), 689–693. | MR | Zbl
[20] Yosida K.: Functional Analysis. $6^{\text{th}}$ edn. Springer-Verlag, Berlin, 1980. | MR | Zbl
[21] Yujun D., Erxin Z.: An application of coincidence degree continuation theorem in existence of solutions of impulsive differential equations. J. Math. Anal. Appl. 197 (1996), 875–889. | MR