Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane
Archivum mathematicum, Tome 36 (2000) no. 2, pp. 139-158 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An existence and uniqueness theorem for solutions in the Banach space $l_{1}$ of a nonlinear difference equation is given. The constructive character of the proof of the theorem predicts local asymptotic stability and gives information about the size of the region of attraction near equilibrium points.
An existence and uniqueness theorem for solutions in the Banach space $l_{1}$ of a nonlinear difference equation is given. The constructive character of the proof of the theorem predicts local asymptotic stability and gives information about the size of the region of attraction near equilibrium points.
Classification : 39A10, 39A11, 65Q05
Keywords: nonlinear difference equations; solution in $l_{1}$
@article{ARM_2000_36_2_a5,
     author = {Petropoulou, Eugenia N. and Siafarikas, Panayiotis D.},
     title = {Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane},
     journal = {Archivum mathematicum},
     pages = {139--158},
     year = {2000},
     volume = {36},
     number = {2},
     mrnumber = {1761618},
     zbl = {1053.39016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_2_a5/}
}
TY  - JOUR
AU  - Petropoulou, Eugenia N.
AU  - Siafarikas, Panayiotis D.
TI  - Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane
JO  - Archivum mathematicum
PY  - 2000
SP  - 139
EP  - 158
VL  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_2_a5/
LA  - en
ID  - ARM_2000_36_2_a5
ER  - 
%0 Journal Article
%A Petropoulou, Eugenia N.
%A Siafarikas, Panayiotis D.
%T Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane
%J Archivum mathematicum
%D 2000
%P 139-158
%V 36
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_2_a5/
%G en
%F ARM_2000_36_2_a5
Petropoulou, Eugenia N.; Siafarikas, Panayiotis D. Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane. Archivum mathematicum, Tome 36 (2000) no. 2, pp. 139-158. http://geodesic.mathdoc.fr/item/ARM_2000_36_2_a5/

[1] Amleh, A. M., Kruse, N. and Ladas, G.: On the difference equation $x_{n+1}={x_{n}+x_{n-1}x_{n-2}\over x_{n}x_{n-1}+x_{n-2}}$. preprint, Department of Math., University of Rhode Island, U.S.A., March 20, 1998.

[2] Earle, C. J. and Hamilton, R. S.: A fixed point theorem for holomorphic mappings. In: Global Analysis Proceedings Symposium Pure Mathematics, Vol. XVI, Berkeley, California, 1968, 61–65, American Mathematical Society, Providence, R.I., 1970. | MR

[3] Ifantis, E. K.: On the convergence of Power-Series Whose Coefficients Satisfy a Poincaré-Type Linear and Nonlinear Difference Equation. Complex Variables, Vol. 9 (1987), 63–80. | MR

[4] LaSalle, J. P.: Stability theory for difference equations. In: Studies in Mathematics, Vol.14 (1977), 1–31, Math. Assoc. America. | MR | Zbl

[5] Philos, Ch., Purnaras, I. K. and Sficas, Y. G.: Global attractivity in a nonlinear difference equation. Applied Mathematics and Computation, Vol. 62 (1994), 249–258. | MR