Keywords: nonlinear difference equations; solution in $l_{1}$
@article{ARM_2000_36_2_a5,
author = {Petropoulou, Eugenia N. and Siafarikas, Panayiotis D.},
title = {Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane},
journal = {Archivum mathematicum},
pages = {139--158},
year = {2000},
volume = {36},
number = {2},
mrnumber = {1761618},
zbl = {1053.39016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_2_a5/}
}
TY - JOUR AU - Petropoulou, Eugenia N. AU - Siafarikas, Panayiotis D. TI - Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane JO - Archivum mathematicum PY - 2000 SP - 139 EP - 158 VL - 36 IS - 2 UR - http://geodesic.mathdoc.fr/item/ARM_2000_36_2_a5/ LA - en ID - ARM_2000_36_2_a5 ER -
%0 Journal Article %A Petropoulou, Eugenia N. %A Siafarikas, Panayiotis D. %T Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane %J Archivum mathematicum %D 2000 %P 139-158 %V 36 %N 2 %U http://geodesic.mathdoc.fr/item/ARM_2000_36_2_a5/ %G en %F ARM_2000_36_2_a5
Petropoulou, Eugenia N.; Siafarikas, Panayiotis D. Bounded solutions and asymptotic stability of nonlinear difference equations in the complex plane. Archivum mathematicum, Tome 36 (2000) no. 2, pp. 139-158. http://geodesic.mathdoc.fr/item/ARM_2000_36_2_a5/
[1] Amleh, A. M., Kruse, N. and Ladas, G.: On the difference equation $x_{n+1}={x_{n}+x_{n-1}x_{n-2}\over x_{n}x_{n-1}+x_{n-2}}$. preprint, Department of Math., University of Rhode Island, U.S.A., March 20, 1998.
[2] Earle, C. J. and Hamilton, R. S.: A fixed point theorem for holomorphic mappings. In: Global Analysis Proceedings Symposium Pure Mathematics, Vol. XVI, Berkeley, California, 1968, 61–65, American Mathematical Society, Providence, R.I., 1970. | MR
[3] Ifantis, E. K.: On the convergence of Power-Series Whose Coefficients Satisfy a Poincaré-Type Linear and Nonlinear Difference Equation. Complex Variables, Vol. 9 (1987), 63–80. | MR
[4] LaSalle, J. P.: Stability theory for difference equations. In: Studies in Mathematics, Vol.14 (1977), 1–31, Math. Assoc. America. | MR | Zbl
[5] Philos, Ch., Purnaras, I. K. and Sficas, Y. G.: Global attractivity in a nonlinear difference equation. Applied Mathematics and Computation, Vol. 62 (1994), 249–258. | MR