On the generalized boundary value problem
Archivum mathematicum, Tome 36 (2000) no. 2, pp. 125-137 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the paper it is proved that the generalized linear boundary value problem generates a Fredholm operator. Its index depends on the number of boundary conditions. The existence results of Landesman-Lazer type are given as an application to nonlinear problems by using dual generalized boundary value problems.
In the paper it is proved that the generalized linear boundary value problem generates a Fredholm operator. Its index depends on the number of boundary conditions. The existence results of Landesman-Lazer type are given as an application to nonlinear problems by using dual generalized boundary value problems.
Classification : 34B05, 34B10, 34B15, 47A53, 47J05, 47N20
Keywords: Fredholm mapping; generalized BVP; dual problem; bounded nonlinearity; Landesman-Lazer conditions
@article{ARM_2000_36_2_a4,
     author = {Rudolf, Boris},
     title = {On the generalized boundary value problem},
     journal = {Archivum mathematicum},
     pages = {125--137},
     year = {2000},
     volume = {36},
     number = {2},
     mrnumber = {1761617},
     zbl = {1054.34024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_2_a4/}
}
TY  - JOUR
AU  - Rudolf, Boris
TI  - On the generalized boundary value problem
JO  - Archivum mathematicum
PY  - 2000
SP  - 125
EP  - 137
VL  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_2_a4/
LA  - en
ID  - ARM_2000_36_2_a4
ER  - 
%0 Journal Article
%A Rudolf, Boris
%T On the generalized boundary value problem
%J Archivum mathematicum
%D 2000
%P 125-137
%V 36
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_2_a4/
%G en
%F ARM_2000_36_2_a4
Rudolf, Boris. On the generalized boundary value problem. Archivum mathematicum, Tome 36 (2000) no. 2, pp. 125-137. http://geodesic.mathdoc.fr/item/ARM_2000_36_2_a4/

[1] Grossinho, M. R.: Some existence result for nonselfadjoint problems at resonance. Contemporary Mathematics 72 (1988), 107–119. | MR

[2] Hartman, P.: Ordinary Differential Equations. John Wiley & Sons, New York-London-Sydney, 1964. | MR | Zbl

[3] Landesman, E. M. and Lazer, A. C.: Nonlinear perturbations of a linear elliptic boundary value problem. J.Math.Mech. 19 (1970), 609–623. | MR

[4] Mawhin, J.: Points fixes, points critiques et problemes aux limites. Sémin. math. Sup.no.92, Presses Univ. Montréal, Montréal, 1985. | MR | Zbl

[5] Przeradzki, B.: Three methods for the study of semilinear equations at resonance. Colloquium Mathematicum 66 (1993), 109–129. | MR | Zbl

[6] Rachůnkov , I.: An existence theorem of the Leray-Schauder type for four-point boundary value problems. Acta UPO Fac.Rer.Nat. 100 (1991), 49–58. | MR

[7] Rachůnkov , I.: Multiplicity results for four-point boundary value problems. Nonlinear Analysis TMA 18 (1992), 497–505. | MR

[8] Rudolf, B.: The generalized boundary value problem is a Fredholm mapping of index zero. Archivum Mathematicum 31 (1995), 55–58. | MR | Zbl

[9] Šeda, V.: Fredholm mappings and the generalized boundary value problem. Differential and Integral Equations 8 (1995), 19–40. | MR

[10] Šeda, V.: Generalized boundary value problems and Fredholm mappings. Nonlinear Analysis TMA 30 (1997), 1607–1616. | MR

[11] Šeda, V.: Generalized boundary value problems with linear growth. Mathematica Bohemica 123 (1998), 385–404. | MR

[12] Trenogin, V. A.: Functional Analysis. Nauka, Moscow, 1980. (Russian) | MR | Zbl

[13] Zeidler, E.: Applied Functional Analysis. Springer-Verlag, New York Berlin Heidelberg, 1995. | MR | Zbl