Green's $\mathcal{D}$-relation for the multiplicative reduct of an idempotent semiring
Archivum mathematicum, Tome 36 (2000) no. 2, pp. 77-93 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The idempotent semirings for which Green’s ${\cal D}$-relation on the multiplicative reduct is a congruence relation form a subvariety of the variety of all idempotent semirings. This variety contains the variety consisting of all the idempotent semirings which do not contain a two-element monobisemilattice as a subsemiring. Various characterizations will be given for the idempotent semirings for which the ${\cal D}$-relation on the multiplicative reduct is the least lattice congruence.
The idempotent semirings for which Green’s ${\cal D}$-relation on the multiplicative reduct is a congruence relation form a subvariety of the variety of all idempotent semirings. This variety contains the variety consisting of all the idempotent semirings which do not contain a two-element monobisemilattice as a subsemiring. Various characterizations will be given for the idempotent semirings for which the ${\cal D}$-relation on the multiplicative reduct is the least lattice congruence.
Classification : 16Y60, 20M10
Keywords: idempotent semiring; variety; Green relations; band; bisemilattice
@article{ARM_2000_36_2_a0,
     author = {Pastijn, F. and Zhao, Xianzhong},
     title = {Green's $\mathcal{D}$-relation for the multiplicative reduct of an idempotent semiring},
     journal = {Archivum mathematicum},
     pages = {77--93},
     year = {2000},
     volume = {36},
     number = {2},
     mrnumber = {1761613},
     zbl = {1051.16027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_2_a0/}
}
TY  - JOUR
AU  - Pastijn, F.
AU  - Zhao, Xianzhong
TI  - Green's $\mathcal{D}$-relation for the multiplicative reduct of an idempotent semiring
JO  - Archivum mathematicum
PY  - 2000
SP  - 77
EP  - 93
VL  - 36
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_2_a0/
LA  - en
ID  - ARM_2000_36_2_a0
ER  - 
%0 Journal Article
%A Pastijn, F.
%A Zhao, Xianzhong
%T Green's $\mathcal{D}$-relation for the multiplicative reduct of an idempotent semiring
%J Archivum mathematicum
%D 2000
%P 77-93
%V 36
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_2_a0/
%G en
%F ARM_2000_36_2_a0
Pastijn, F.; Zhao, Xianzhong. Green's $\mathcal{D}$-relation for the multiplicative reduct of an idempotent semiring. Archivum mathematicum, Tome 36 (2000) no. 2, pp. 77-93. http://geodesic.mathdoc.fr/item/ARM_2000_36_2_a0/

[1] Howie J. M.: Fundamentals of Semigroup Theory. Oxford Science Publications, Oxford, 1995. | MR | Zbl

[2] McKenzie R., and A. Romanowska: Varieties of $\cdot $-distributive bisemilattices. Contributions to General Algebra, (Proc. Klagenfurt Conf., Klagenfurt 1978), 213–218, Heyn, Klagenfurt, 1979. | MR

[3] Pastijn F., and Y. Q. Guo: The lattice of idempotent distributive semiring varieties. Science in China (Series A) 42 (8) (1999), 785–804. | MR

[4] Sen M. K., Guo Y. Q., and K. P. Shum: A class of idempotent semirings. preprint. | MR