The natural transformations $TT^{(r)}\to TT^{(r)}$
Archivum mathematicum, Tome 36 (2000) no. 1, pp. 71-75
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
For natural numbers $r\ge 2$ and $n$ a complete classification of natural transformations $A:TT^{(r)}\rightarrow TT^{(r)}$ over $n$-manifolds is given, where $T^{(r)}$ is the linear $r$-tangent bundle functor.
For natural numbers $r\ge 2$ and $n$ a complete classification of natural transformations $A:TT^{(r)}\rightarrow TT^{(r)}$ over $n$-manifolds is given, where $T^{(r)}$ is the linear $r$-tangent bundle functor.
@article{ARM_2000_36_1_a7,
author = {Mikulski, W{\l}odzimierz M.},
title = {The natural transformations $TT^{(r)}\to TT^{(r)}$},
journal = {Archivum mathematicum},
pages = {71--75},
year = {2000},
volume = {36},
number = {1},
mrnumber = {1751615},
zbl = {1049.58009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_1_a7/}
}
Mikulski, Włodzimierz M. The natural transformations $TT^{(r)}\to TT^{(r)}$. Archivum mathematicum, Tome 36 (2000) no. 1, pp. 71-75. http://geodesic.mathdoc.fr/item/ARM_2000_36_1_a7/
[1] Gancarzewicz, J., Kolář, I.: Natural affinors on the extended $r$-th order tangent bundles. Suppl. Rendiconti Circolo Mat. Palermo 30 (1993), 95–100. | MR
[2] Kolář I., Michor P. W., Slovák J.: Natural operations in differential geometry. Springer-Verlag, Berlin 1993. | MR
[3] Zajtz, A.: On the order of natural operators and liftings. Ann. Polon. Math. 49 (1988), 169–178. | MR