Fixed point theorems for weakly sequentially closed maps
Archivum mathematicum, Tome 36 (2000) no. 1, pp. 61-70 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A number of fixed point theorems are presented for weakly contractive maps which have weakly sequentially closed graph. Our results automatically lead to new existence theorems for differential inclusions in Banach spaces relative to the weak topology.
A number of fixed point theorems are presented for weakly contractive maps which have weakly sequentially closed graph. Our results automatically lead to new existence theorems for differential inclusions in Banach spaces relative to the weak topology.
Classification : 34G25, 47H10, 47J05
Keywords: fixed points; weakly sequentially closed maps; weakly contractive maps
@article{ARM_2000_36_1_a6,
     author = {O'Regan, Donal},
     title = {Fixed point theorems for weakly sequentially closed maps},
     journal = {Archivum mathematicum},
     pages = {61--70},
     year = {2000},
     volume = {36},
     number = {1},
     mrnumber = {1751614},
     zbl = {1049.47051},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2000_36_1_a6/}
}
TY  - JOUR
AU  - O'Regan, Donal
TI  - Fixed point theorems for weakly sequentially closed maps
JO  - Archivum mathematicum
PY  - 2000
SP  - 61
EP  - 70
VL  - 36
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_2000_36_1_a6/
LA  - en
ID  - ARM_2000_36_1_a6
ER  - 
%0 Journal Article
%A O'Regan, Donal
%T Fixed point theorems for weakly sequentially closed maps
%J Archivum mathematicum
%D 2000
%P 61-70
%V 36
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_2000_36_1_a6/
%G en
%F ARM_2000_36_1_a6
O'Regan, Donal. Fixed point theorems for weakly sequentially closed maps. Archivum mathematicum, Tome 36 (2000) no. 1, pp. 61-70. http://geodesic.mathdoc.fr/item/ARM_2000_36_1_a6/

[1] Aliprantis C. D., Border K. C.: Infinite dimensional analysis. Springer-Verlag Berlin, 1985.

[2] Arino O., Gautier S., Penot J. P.: A fixed point theorem for sequentially continuous mappings with applications to ordinary differential equations. Funkc. Ekvac. 27 (1984), 273–279. | MR

[3] Chow S. N., Schuur J. D.: An existence theorem for ordinary differential equations in Banach spaces. Bull. Amer. Math. Soc. 77 (1971), 1018–1020. | MR | Zbl

[4] Chow S. N., Schuur J. D.: Fundamental theory of contingent differential equations in Banach spaces. Trans. Amer. Math. Soc. 179 (1973), 133–144. | MR

[5] Cichoń M.: Weak solutions of differential equations in Banach spaces. Discuss. Mathematicae–Differential Inclusions, 15 (1995), 5–14. | MR

[6] Edwards R. E.: Functional analysis, theory and applications. Holt, Rinehart and Winston, New York, 1965. | MR | Zbl

[7] Geitz R. F.: Pettis integration. Proc. Amer. Math. Soc. 82 (1981), 81–86. | MR | Zbl

[8] Himmelberg C. J.: Fixed points of compact multifunctions. Jour. Math. Anal. Appl. 38 (1972), 205–207. | MR | Zbl

[9] Köthe G.: Topological vector spaces I. Springer-Verlag Berlin, 1965. | MR

[10] Mitchell A. R., Smith C. K. L.: An existence theorem for weak solutions of differential equations in Banach spaces. In: Nonlinear Equations in Abstract Spaces (edited by V. Lakshmikantham), Academic Press (1978), 387–404. | MR | Zbl

[11] O’Regan D.: Integral equations in reflexive Banach spaces and weak topologies. Proc. Amer. Math. Soc. 124 (1996), 607–614. | MR

[12] O’Regan D.: Fixed point theory for weakly sequentially continuous mappings. Mathematical and Computer Modelling 27(5) (1998), 1–14. | MR | Zbl

[13] O’Regan D.: Weak solutions of ordinary differential equations in Banach spaces. Applied Math. Letters 12(1) (1999), 101–105. | MR | Zbl

[14] O’Regan D.: Fixed point theory for weakly contractive maps with applications to operator inclusions in Banach spaces relative to the weak topology. Zeitschrift für Analysis und ihre Anwendungen 17 (1998), 282–296. | MR | Zbl

[15] O’Regan D.: Nonlinear operator approximation theory. Numerical Functional Analysis and Optimization 19(5/6) (1998), 587–592. | MR

[16] Smith C. K. L.: Measure of nonconvergence and noncompactness. Ph.D thesis, University of Texas at Arlington, 1978. | MR

[17] Szep A.: Existence theorems for weak solutions of ordinary differential equations in reflexive Banach spaces. Studia Sci. Math. Hungar. 6 (1971), 197–203. | MR